

DRAFT

Remedial Investigation Work Plan Addendum 27

New River Unit (RAAP-044)

Radford Army Ammunition Plant Radford, Virginia

Prepared for: Radford Army Ammunition Plant

June 2008

DEPARTMENT OF THE ARMY

US ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MD 21010-5403

MCHB-TS-REH

1 7 JUL 2008

MEMORANDUM FOR Office of Environmental Quality, Radford Army Ammunition Plant (SJMRF-OP-EQ/Mr. Jim McKenna), P.O. Box 2, Radford, VA 24143-0002

SUBJECT: Document Titled: "Draft Remedial Investigation Work Plan, Addendum 27, New River Unit (RAAP-044), Radford Army Ammunition Plant, Virginia, June 2008"

- 1. The U.S. Army Center for Health Promotion and Preventive Medicine reviewed the subject document on behalf of the Office of The Surgeon General pursuant to Army Regulation 200-1 (Environmental Protection and Enhancement). We appreciate the opportunity to review this work plan and have no additional comments.
- 2. The document was reviewed by Mr. Dennis Druck, Environmental Health Risk Assessment Program. He can be reached at DSN 584-2953, commercial (410) 436-2953 or electronic mail "dennis.druck@us.army.mil".

FOR THE COMMANDER:

JEFFREY S. KIRKPATRICK

Director, Health Risk Management

CF:

HQDA (DASG-PPM-NC) IMCOM, NERO (IMNE-PWD-E) USACE (CEHNC-CX-ES) USAEC (IMAE-CD/Mr. Rich Mendoza)

Ammunition Systems Group Energetic Systems Division Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100

www.atk.com

June 30, 2008

Mr. James L. Cutler, Jr. Virginia Department of Environmental Quality 629 East Main Street Richmond, VA 24143-0100

Subject: Draft Remedial Investigation Work Plan Addendum 27 New River Unit (RAAP-044) June 2008 Radford Army Ammunition Plant, EPA ID# VA1 210020730

Dear Mr. Cutler:

This is to acknowledge that the subject document was sent to you on June 25, 2008. Enclosed is a copy of the transmittal email message.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder of my staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 639-8641.

Sincerely,

3.W. Holt, Environmental Manager

Alliant Techsystems Inc.

c: Durwood Willis

Virginia Department of Environmental Quality P. O. Box 10009

Richmond, VA 23240-0009

E. A. Lohman Virginia Department of Environmental Quality West Central Regional Office 3019 Peters Creek Road Roanoke, VA 24019 Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg 90, 3rd Floor, Room 30A
IMAE-CDN
Rock Island, Illinois 61299

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File
J. McKenna, ACO Staff
Rob Davie-ACO Staff
M.A. Miano
P.W. Holt
J. J. Redder
Env. File

Coordination:

Greene, Anne

From:

McKenna, Jim

Sent:

Wednesday, June 25, 2008 11:03 AM

To:

Greene, Anne; beth lohman; dennis.druck@us.army.mil; diane.wisbeck@arcadis-us.com; durwood willis2; Redder, Jerome; jim spencer; jlcutler@deq.virginia.gov; Llewellyn, Tim; Mendoza, Richard R Mr CIV USA IMCOM; Parks, Jeffrey N; Timothy.Leahy@shawgrp.com;

Tina_Devine@URSCorp.com; Tom.Meyer@nab02.usace.army.mil

Cc:

Flint, Jeremy; Holt, Paige

Subject:

Draft NRU RAAP-044 Work Plan (UNCLASSIFIED)

Importance:

High

Classification:

UNCLASSIFIED

Caveats: NONE

All:

Note the contractor will ship the subject document with a copy of this email to the POCs and tracking numbers below.

James McKenna 7989 6785 7817 (2 copies & cd); Richard Mendoza 7905 3287 8668 (1 copy); Tom Meyer 7989 6785 9990 (1 copy); Dennis Druck 7919 2096 6373 (1 copy); James Cutler 7989 6786 9475 (1 copy); Durwood Willis 7910 9313 4116 (1 copy); Elizabeth Lohman 7905 3289 1426 (1 copy);

Thank you for your support of the Radford Army Ammunition Plant Installation Restoration Program.

Jim McKenna

Classification: UNCLASSIFIED

Caveats: NONE

Virginia DEQ Meeting for the New River Unit Radford AAP June 20, 2008 Radford, VA Draft Meeting Minutes

Attendees

Jim McKenna Radford Army Ammunition Plant (RFAAP)

Paige Holt ATK-RFAAP

Jim Cutler Virginia Department of Environmental Quality (VADEQ)

Ahmet Bulbulkaya VADEQ Risk Assessor

Chris Kalinowski ARCADIS
Chris Day ARCADIS

Purpose

This site walk at the RAAP-NRU was conducted to allow Jim Cutler and Ahmet Bulbulkaya of Virginia DEQ an opportunity to visit each of the six areas of concern at the NRU in preparation of their review of the recently prepared RI Work Plan and the upcoming Human Health and Ecological Risk Assessments.

Summary

After brief introductions, the participants traveled from Building 220 at the RAAP-MMA to the NRU. While touring the sites, Chris Kalinowski reviewed the proposed investigation activities with Jim Cutler and Ahmet Bulbulkaya. Chris Day focused his discussions with Ahmet on the protocols that will be followed during preparation of the human health and ecological risk assessments. The following presents a brief summary of the observations/discussion during the site walk:

- Jim Cutler appeared to be pleased with the proposed investigation strategy for each of the AOCs and did not indicate that further investigation would be required. However, Jim did express some concern over the potential for impacts to exist underneath the concrete pads at the BLA and IAA. Jim did not see the need to sample the utility vaults at the BLA that had intact concrete covers.
- In addition to the AOCs the participants viewed all existing monitoring wells at the site.
- VDEQ agreed with ARCADIS' assessment that the "delta" area at the downgradient extent of the BDDT is not a delta in the riverine/aquatic sense and that the material in this area should be treated as surface soils rather than sediment. It should be noted that this area is overgrown with a dense stand of annual/perennial grasses and forbs.
- Chris Day inquired about which protocol/approach should be used in the preparation of the human health risk assessment (HHRA). Ahmet responded that he would check with his supervisor and let us know whether we should use the standard USEPA RAGS approach or the VDEQ approach. He said that the VDEQ HHRA approach is essentially identical to the USEPA RAGS approach, with only some slight differences in few input parameters for some calculations, and generally includes an excavation worker scenario and associated trench model, in addition

to the standard scenarios generally required in RAGS type HHRAs (e.g., hypo future residential scenario and site worker scenario).

Note, upon consultation with the ARMY after the Site Walk, it was decided that the potential risks to human health should be evaluated following current USEPA RAGS as the CERCLA process is being followed at the NRU.

- When asked about which ecological risk assessment (ERA) approach VDEQ was looking for, Ahmet responded that VDEQ does not have any formal ERA guidance, but that he would expect to see an ERA that followed the USEPA 8-step process. Chris Day discussed with him the approach ARCADIS used recently at other DOD facilities (Fort Leavenworth; Lake City AAP; Fort Gordon, etc) which followed the USEPA Amended Guidance on Ecological Risk Assessments at Military Bases (USEPA 2000), and that this approach is the 8-step approach with a few adjustments/amendments to account for refinement of exposure parameters, EPCs, etc. Ahmet said he was familiar with that approach and that it would be acceptable for use at the NRU.
- Ahmet was also very amenable to discussing how to handle background metals in both the HHRA and ERA process. He took interest in the discussion about there being established background UTLs for the installation. He would be ok with screening out background metals in the COPC selection step of the HHRA and the ERA, as opposed to the standard USEPA approach of having to retain the metals thru the quantitative portion of the risk assessment and then discussing site risks in relation to background risks in the risk characterization and uncertainties section. He said that if ARCADIS would like to use the established background UTLs to screen out metals early in the screening/COPC selection process, that we could propose that and run it by him for review and approval.
- Ahmet indicated that he would be flexible on the definition of the depth interval for surface soil.
 Chris Day stated that ARCADIS generally uses 0 to 2 ft bgs to represent surface soil; although we have used a 0 to 1 ft bgs interval on some sites. Ahmet believed that either of those option would likely be OK.
- Chris Day and Ahmet agreed that they did not see any gross evidence of ecological stress at any of the NRU sites visited; all areas had viable habitat. The terrestrial habitat in all areas looked diverse and of high quality, and the pond at the WBG area appears to provide a robust resource and services area for wildlife.
- Chris Kalinowski provided Ahmet with a tabulated summary of the number of samples (by media) that have been collected from each AOC. Ahmet will review the table and evaluate whether additional sampling would be required to complete the risk assessments.

Action Items

- 1. ARCADIS to submit Draft RI Work Plan to VaDEQ for review and approval.
- 2. Ahmet Bulbulkaya to inquire with supervisor whether to use the standard USEPA RAGS approach or VDEQ approach for the HHRA protocol. NOTE, USEPA RAGS should be used to evaluated potential human health risks as NRU is being evaluated using the CERCLA process.
- 3. Jim Cutler to provide timely review of RI Work Plan in anticipation of starting field work in August 2008.

Christopher Kalinowski

Site Manager

Diane Wisbeck Deputy Project Manager

Tim Llewellyn Project Manager Remedial Investigation Work Plan Addendum 27 New River Unit RFAAP-044

Radford Army Ammunition Plant, Radford, Virginia

Prepared for:
Radford Army Ammunition Plant
Prepared by:
ARCADIS
1114 Benfield Boulevard
Suite A
Millersville
Maryland 21108
Tel 410.987.0032
Fax 410.987.4392

Our Ref.: GP08RAAP.0044 Date: June 25, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

DRAFT

Remedial Investigation Work Plan Addendum 27

New River Unit RAAP-044

Radford Army Ammunition Plant, Radford, Virginia

June 2008

Remedial Investigation Work Plan Addendum 27					
Ne	New River Unit i				
RF	AAP-04	4		i	
1.	Introdu	uction			
	1.1	Purpos	se	1	
		1.1.1	Building Debris Disposal Trench Investigation Objectives	2	
		1.1.2	Bag Loading Area Investigation Objectives	2	
		1.1.3	Igniter Assembly Area Investigation Objectives	3	
		1.1.4	Northern Burning Ground Investigation Objectives	3	
		1.1.5	Rail Yard Investigation Objectives	3	
		1.1.6	Western Burning Ground Investigation Objectives	3	
		1.1.7	Groundwater Investigation Objectives	3	
	1.2	Report	Organization	4	
2.	Site Ba	ckgrou	ınd	5	
	2.1	Site Lo	ocation and History	5	
		2.1.1	Physiography, Geology, and Hydrogeology	5	
		2.1.2	Surface Water Hydrology	6	
		2.1.3	Soil Types	6	
	2.2	Areas of Concern			
		2.2.1	Building Debris Disposal Trench	6	
		2.2.2	Bag Loading Area (BLA)	6	
		2.2.3	Igniter Assembly Area (IAA)	7	
		2.2.4	Northern Burning Ground	7	
		2.2.5	Rail Yard	7	
		2.2.6	Western Burning Ground	8	

3.	Summary of Historical Investigations 9			
	3.1	Building Debris Disposal Trench		9
		3.1.1	Soil	9
		3.1.2	Surface Water/Sediment	10
	3.2	Bag Lo	pading Area (BLA)	12
		3.2.1	Soil	12
		3.2.2	Surface Water/Sediment	13
		3.2.3	Conductive Flooring	14
		3.2.4	Asbestos and Lead Based Paint Sampling	14
	3.3	Igniter Assembly Area (IAA)		15
		3.3.1	Soil	15
		3.3.2	Sediment	17
		3.3.3	Conductive Flooring	18
		3.3.4	Asbestos and Lead Based Paint Sampling	18
	3.4	Northern Burning Ground		19
		3.4.1	Soil	19
		3.4.2	Sediment	20
	3.5	Rail Ya	ard (RY)	21
		3.5.1	Soil	21
		3.5.2	Sediment and Sludge	23
		3.5.3	Surface Water	24
	3.6	Wester	rn Burning Ground (WBG)	24
		3.6.1	Soil	24
		3.6.2	Surface Water/Sediment	26
		3.6.3	Fish Tissue	28
	3.7	Ground	dwater	28
4.	Data G	aps and	d Proposed RI Sampling Plan	30

4.1	Building Debris Disposal Trench (BDDT)				
	4.1.1	Data Ga	aps	30	
		4.1.1.1	Soils	31	
		4.1.1.2	Sediments	31	
		4.1.1.3	Surface Water	31	
	4.1.2	Propose	ed Activities	32	
4.2	Bag Loading Area (BLA)				
	4.2.1	Data ga	ps	33	
		4.2.1.1	Conductive Flooring	33	
		4.2.1.2	Soils and Sediments	33	
	4.2.2	Propose	ed Activities	34	
4.3	Igniter Assembly Area				
	4.3.1	Data Ga	aps	36	
		4.3.1.1	Conductive Flooring	36	
		4.3.1.2	Soils and Sediments	36	
	4.3.2	Propose	ed Activities	37	
4.4	Northe	rthern Burning Ground (NBG)			
4.5	Rail Yard (RY) 3				
4.6	Western Burning Ground (WBG)				
	4.6.1	Data Ga	aps	39	
		4.6.1.1	Soils	39	
		4.6.1.2	Sediments	40	
		4.6.1.3	Surface Water	40	
	4.6.2	Propose	ed Activities	40	
4.7	Groundwater Monitoring				
	4.7.1	Data Ga	aps	41	
	4.7.2	Propose	ed Field Investigation	42	

5.	. Field Investigation			
	5.1	Sampling Procedures	44	
	5.2	Preliminary Site Inspection and Utility Mark-Out	44	
	5.3	Surveying	44	
	5.4	Investigation Derived Materials	45	
6.	Quality	Quality Control		
	6.1	Data Quality Objectives for Measurement Data	46	
	6.2	Measurement/Data Acquisition	46	
	6.3	Assessment/Oversight	47	
	6.4	Data Validation and Usability	47	
7.	Schedu	ule and Reporting	48	
8.	Refere	nces	49	
Та	bles			
	3-1	Historical Soil Sampling Results, Building Debris Disposal Trench		
	3-2	Historical Sediment Sampling Results, Building Debris Disposal Trench		
	3-3	Historical Surface Water Sampling Results, Building Debris Disposal Trench		
	3-4	Historical Soil Sampling Results, Bag Loading Area		
	3-5	Historical Sediment Sampling Results, Bag Loading Area		
	3-6	Historical Surface Water Sampling Results, Bag Loading Area		
	3-7	Asbestos and Lead Based Paint Samples, Bag Loading Area		
	3-8	Historical Soil Sampling Results, Igniter Assembly Area		
	3-9	Historical Sediment Sampling Results, Igniter Assembly Area		
	3-10	Asbestos and Lead Based Paint Samples, Igniter Assembly Area		
	3-11	Historical Soil Sampling Results, Northern Burning Ground		
	3-12	Historical Sediment Sampling Results, Northern Burning Ground		
	3-13	Historical Soil Samping Results, Rail Yard		
	3-14	Historical Sediment Samping Results, Rail Yard		
	3-15	Historical Surface Water Samping Results, Rail Yard		

	3-17	Historical Sediment Samping Results, Western Burning Ground
	3-18	Historical Surface Water Samping Results, Western Burning Ground
	3-19	Monitoring Well Construction Details, New River Unit
	3-20	Summary of Constituents Detected in Groundwater, June 2007 Sampling Event
	4-1	2008 Proposed Sampling and Analysis Plan, Building Debris Disposal Trench
	4-2	2008 Proposed Sampling and Analysis Plan, Bag Loading Area
	4-3	2008 Proposed Sampling and Analysis Plan, Igniter Assembly Area
	4-4	2008 Proposed Sampling and Analysis Plan, Western Burning Ground
	4-5	2008 Proposed Sampling and Analysis Plan, Groundwater
Figur	es	
	1-1	Radford Army Ammunition Plant Site Location
	1-2	New River Unit Areas of Concern
	3-1	Building Debris Disposal Trench Site Layout and Pre-2004 Sampling Locations
	3-2	Building Debris Disposal Trench 2002 and 2004 Benzo(a)pyrene Detections
	3-3	Bag Loading Area Site Layout and Historical Sampling Locations
	3-4	Igniter Assembly Area Site Layout and Historical Sampling Locations
	3-5	Northern Burning Ground Site Layout and pre-2004 Sampling Locations
	3-6	Northern Burning Ground 2002 and 2004 Lead Detections
	3-7	Rail Yard Site Layout and Historical Sampling Locations
	3-8	Western Burning Ground Site Layout and Historical Sampling Locations
	3-9	Western Burning Ground Historical Surface Water and Sediment Sampling Locations
	3-10	New River Unit Groundwater Monitoring Well Locations
	4-1	Building Debris Disposal Trench Proposed Sampling Locations
	4-2	Bag Loading Area Proposed Sampling Locations
	4-3	Igniter Assembly Area Proposed Sampling Locations

3-16 Historical Soil Samping Results, Western Burning Ground

- 4-4 Western Burning Ground Proposed Sampling Locations
- 4-5 Western Burning Ground Proposed Downstream Sampling Locations

Appendix

A. ARCADIS Quality Assurance Plan

Acronyms and Abbreviations

AEC United States Army Environmental Center

amsl Above Mean Sea Level

AOC Area of Concern

BDDT Building Debris Disposal Trench

bgs Below Ground Surface
BLA Bag Loading Area

CERCLA Comprehensive Environmental Response and Compensation Liability Act

COI Constituent of Interest
CSM Site Conceptual Model
DQOs Data Quality Objectives

FS Feasibility Study

ft Feet

GPS Global Positioning System HASP Health and Safety Plan

HHRA Human Health Risk Assessment

IAA Igniter Assembly Area

IDM Investigation Derived MaterialsIRP Installation Restoration ProgramMCL Maximum Contaminant Level

mg/kg Milligrams per kilogram
MMA Main Manufacturing Area

MWP Master Work Plan
NAD North American Datum
NBG Northern Burning Ground

NFA No Further Action

NROW New River Ordinance Works

NRU New River Unit

PAHs Polynuclear Aromatic Hydrocarbons

PBC Performance Based Contract PCBs Polychlorinated Biphenyls

QA Quality Assurance

QAPA Quality Assurance Plan Addendum
QAPP Quality Assurance Project Plan

QC Quality Control

RBC Risk-Based Concentration

RFAAP Radford Army Ammunition Plant

RI Remedial Investigation

RY Rail Yard

SLERA Screening Level Ecological Risk Assessment

SOP Standard Operating Procedure SVOC Semi-volatile Organic Compound

TAL Target Analyte List

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC Total Organic Carbon
TOX Total Organic Halides

tw-RBC Time-weighted Risk Based ConcentrationUSACE United States Army Corps of Engineers

UTL Upper Tolerance Limit
VOC Volatile Organic Compound
WBG Western Burning Ground

XRF X-ray fluorescence

Radford Army Ammunition Plant, Radford, Virginia

1. Introduction

ARCADIS U.S, Inc. (ARCADIS) has been retained by the United States Army Environmental Command (AEC) to perform Installation Restoration Program (IRP) activities at the Radford Army Ammunition Plant (RFAAP). The RFAAP facility is located in the mountains of southwestern Virginia and consists of two noncontiguous units: the New River Unit (NRU) and the Main Manufacturing Area (MMA). The MMA is located approximately 5 miles northeast of the City of Radford, Virginia. The NRU is located about six miles west of the MMA, near the town of Dublin, Virginia (Figure 1-1). The IRP activities for both the RFAAP-MMA and the NRU are being conducted as part of a Performance Based Contract (PBC) awarded to ARCADIS under contract W91ZLK-05-D-0015: Task 0002. The RFAAP-NRU is managed under the Comprehensive Environmental Response and Compensation Liability Act (CERCLA).

ARCADIS has prepared this site specific Remedial Investigation (RI) Work Plan to complete the remedial investigation at the RFAAP-NRU. Previous site investigations completed at the RFAAP-NRU resulted in the identification of six Areas of Concern (AOCs) that require additional characterization and possible remediation: the Building Debris Disposal Trench (BDDT), the Bag Loading Area (BLA), the Igniter Assembly Area (IAA), the Northern Burning Ground (NBG), the Rail Yard (RY), and the Western Burning Ground (WBG). Figure 1-2 shows the layout of these areas within the RFAAP-NRU. These six AOCs encompass an area of approximately 800 acres.

This work plan incorporates by reference applicable sections of the Master Work Plan (URS, 2003) and Standard Operating Procedures (SOPs). The health and safety requirements for all fieldwork at the RFAAP-NRU are included in the Health and Safety Plan addendum (HSPA) (ARCADIS, 2008a), which has been provided under separate cover. ARCADIS has also prepared a Quality Assurance Plan Addendum (QAPA) (ARCADIS, 2008b) to the Master Work Plan, which has been attached as Appendix A.

1.1 Purpose

The purpose of this Work Plan is to facilitate the collection of the data necessary to finalize the remedial investigation of the RFAAP-NRU. A significant amount of data has been collected for the six RFAAP-NRU sites during previous phases of investigation. However, additional data points are necessary to complete the investigation and to assist in planning the remedial strategy for the site. The general objectives of this investigation are:

Radford Army Ammunition Plant, Radford, Virginia

- To fill the remaining data gaps within the RFAAP-NRU site conceptual model (CSM), including completion of potential source area characterization and delineation, delineation of surface soil and sediment impacts (if any), and assessment of potential groundwater and surface water impacts;
- To collect the necessary information to design treatability/feasibility studies and perform technology evaluations of potential remedial alternatives for each of the RFAAP-NRU sites, if required; and
- To support the completion of human health risk assessment (HHRA), screening level ecological risk assessment (SLERA), and CERCLA compliant RI and Feasibility Study (FS) reports for the RFAAP-NRU.

In addition to the general objectives described above, the following sections summarize site-specific objectives of the remedial investigations at the six AOCs within the RFAAP-NRU.

- 1.1.1 Building Debris Disposal Trench Investigation Objectives
- Delineate polynuclear aromatic hydrocarbon (PAH) impacts to surface and subsurface soil in the area between the former disposal trench and the downgradient stream.
- Evaluate concentration trends within sediment and surface water in the unnamed stream downgradient of the BDDT.
- 1.1.2 Bag Loading Area Investigation Objectives
- Delineate metals, PAHs, and asbestos in surface soils surrounding site buildings.
- Delineate polychlorinated biphenyls (PCBs) in surface soils surrounding site buildings and a former transformer location.
- Quantify the overall extent and condition of conductive flooring material.

Radford Army Ammunition Plant, Radford, Virginia

1.1.3 Igniter Assembly Area Investigation Objectives

- Delineate metals, PAHs, and asbestos in surface soils surrounding site buildings and sediments in nearby storm water drainage ditches.
- Delineate PCBs in surface soil.
- Quantify the overall extent and condition of conductive flooring material within the IAA.

1.1.4 Northern Burning Ground Investigation Objectives

This area has been adequately characterized and delineated; therefore, no additional investigation is proposed. A limited area of soils is impacted with metals and PCBs as a result of historical burning operations.

- 1.1.5 Rail Yard Investigation Objectives
- This area has been adequately characterized; therefore, no additional investigation is proposed.
- 1.1.6 Western Burning Ground Investigation Objectives
- Delineate the horizontal and vertical extent of lead impacts to sediments in the unnamed pond.
- Evaluate current levels of PAHs in surface water and sediments in the unnamed creek downgradient of the pond.
- 1.1.7 Groundwater Investigation Objectives
- Evaluate potential impacts to groundwater at the RFAAP-NRU from historic operations at the site.
- Establish naturally occurring concentrations of metals in groundwater at the RFAAP-NRU.

Radford Army Ammunition Plant, Radford, Virginia

1.2 Report Organization

This document consists of the following sections:

- Section 1 introduces the report and discusses the objectives of the proposed investigation.
- Section 2 provides a general description of the operational history of the RFAAP-NRU; a summary of the AOCs, including site descriptions and constituents of interest (COIs); and a discussion of the geology and hydrogeology within the RFAAP-NRU.
- Section 3 summarizes the historical investigation activities conducted at the different AOCs.
- Section 4 presents the data gaps remaining and the proposed activities to address these data gaps.
- Section 5 presents the general approach to investigation the remedial investigation will take.
- Section 6 presents the QA/QC procedures.
- Section 7 presents the reporting procedures.
- Section 8 provides references cited in this report.

Radford Army Ammunition Plant, Radford, Virginia

2. Site Background

This section provides a brief discussion of the relevant background information specific to the individual AOCs at the RFAAP-NRU, including brief summaries of the operational history and COIs at each AOC. Detailed historical information on the various AOCs and the overall geology, hydrogeology, and surface water hydrology of the RFAAP-NRU are provided in previous reports, including the Master Work Plan (URS, 2003).

2.1 Site Location and History

The RFAAP-NRU facility is located in the mountains of southwestern Virginia in the Great Valley subprovince of the Valley and Ridge Physiographic Province. The RFAAP-NRU is located approximately six miles west of the RFAAP MMA, near the town of Dublin, Virginia in Pulaski County (Figure 1-1). The RFAAP-NRU was established in 1940, and was originally known as the New River Ordinance Works (NROW). The NROW was incorporated into the RFAAP in 1945. The RFAAP-NRU facility operated as a bag manufacturing and loading plant for artillery, cannon, and mortar projectiles during World War II. Although active manufacturing activities at the RFAAP-NRU were reported to have ceased in the 1940's (after World War II), portions of the RFAAP-NRU are still utilized as storage facilities for operations at the MMA.

Six AOCs have been identified at the RFAAP-NRU: the BDDT, BLA, IAA, NBG, RY, and WBG. As depicted in Figure 1-2, these six areas are located in the western half of the RFAAP-NRU. Land surface elevations in the western half of the RFAAP-NRU range from 2,020 feet above mean sea level (ft amsl) to 2,115 ft amsl. Most overland runoff in the western RFAAP-NRU drains to an unnamed stream that runs through the southwest portion of the facility. This unnamed stream flows from west to east across the site before exiting the installation.

2.1.1 Physiography, Geology, and Hydrogeology

RFAAP is located in the Great Valley subprovince of the Valley and Ridge
Physiographic Province, which is characterized by highly deformed carbonate bedrock
with significant topographic relief. In addition to complex geologic structure, the
carbonate formations demonstrate karst features including sinkholes, conduit
networks, and epikarst bedrock surface features. In this hydrogeologic setting,
groundwater flow is progressively channeled through karst features until discharge
occurs at springs or other surface water bodies. Groundwater flow in the NRU is

Radford Army Ammunition Plant, Radford, Virginia

controlled by karst features and is believed to discharge eventually to the New River. The NRU also contains at least one spring and several unnamed streams and tributaries that provide connection with area groundwater. Above the bedrock groundwater occurs in weathered parent rock material, colluvium, and alluvial deposits of varying permeability. The physiography, geology and hydrogeology for the RFAAP-NRU are described in futher detail within the Master Work Plan (URS, 2003).

2.1.2 Surface Water Hydrology

A series of small unnamed creeks provide immediate drainage within the RFAAP-NRU. One unnamed creek, which flows west to east through the southern portion of the RFAAP-NRU, provides drainage for all of the AOCs discussed in this report. This creek is also believed to serve as the groundwater discharge point for the southern portion of the RFAAP-NRU.

2.1.3 Soil Types

Detailed descriptions of the soil types that occur at the NRU are presented in the Facility Wide Background Study Report (IT,2001).

2.2 Areas of Concern

2.2.1 Building Debris Disposal Trench

The BDDT is a former ephemeral unlined natural drainage channel located in the southern portion of the RFAAP-NRU (Figure 1-2). The trench drains surface water into the unnamed stream, which flows off-site and eventually converges with the New River. The area between the downgradient extent of the drainage ditch and the unnamed stream contains surface soils eroded from the ditch and a thick grass groundcover. The trench was previously used as a disposal site for miscellaneous building debris, including concrete, wood, and 5 gallon buckets containing a substance believed to be roofing tar. The building debris and any visibly stained soil was removed from the trench in 1998, replaced with clean fill, lined with a geotextile fabric, and covered with riprap.

2.2.2 Bag Loading Area (BLA)

The BLA is located along the southwestern boundary of the RFAAP-NRU (Figure 1-2). The BLA ran two black powder bag loading production lines from 1941-1943. Thirteen

Radford Army Ammunition Plant, Radford, Virginia

buildings once existed onsite; however, all process equipment, wooden roofs, and wooden walls have been removed from the buildings, leaving only concrete slabs and cinder block walls. The concrete slab floors in Buildings 404 through 413 (including the second story floors of Buildings 404 and 405) were covered in a conductive cement-like material containing various metals and asbestos. This conductive flooring was used to prevent the build-up of static charges in areas where energetic materials were handled. Removal of the walls and roofs of the buildings has exposed the conductive flooring to weather, causing it to degrade and break away from the underlying concrete. In some cases, the flooring has degraded into a red powder-like material and washed onto the surrounding soils. Buildings 414 through 416 did not have conductive flooring and are not considered an environmental concern at BLA. Surface water at the BLA generally drains to the unnamed stream located to the north of the BLA via overland flow and through series of drainage ditches/culverts.

2.2.3 Igniter Assembly Area (IAA)

The IAA is located in the western portion of the RFAAP-NRU (Figure 1-2). Buildings at the site were used for igniter assembly, as well as the shipping and receiving of materials related to the IAA. The main igniter assembly buildings (Buildings 8102 1 through 8102 8) and multiple outparcel buildings at the IAA had a conductive flooring material similar to the BLA. The conductive flooring was exposed to the weather when the wooden roof and walls were removed from the buildings. As a result, the conductive flooring has degraded into a red powder-like substance very similar to what has been observed at the BLA. In many areas, the degraded conductive flooring material has washed off the concrete pads onto surrounding surface soils.

2.2.4 Northern Burning Ground

The NBG is a former burning ground located in the northwestern portion of the RFAAP-NRU near Gate 20 (Figure 1-2). The NBG appears to have been in limited use as a burning ground. No structures appear on the site, and the burning operations were apparently confined to a small area at the center of the site. Surface water at the NBG flows toward a drainage ditch that runs parallel to a paved surface road to the north of the site.

2.2.5 Rail Yard

The RY is a former loading and unloading area for rail cars located in the southwestern portion of the RFAAP-NRU, east of the IAA and WBG (Figure 1-2). The RY consists of

Radford Army Ammunition Plant, Radford, Virginia

three sets of tracks, three open transfer platforms, and one decommissioned sewer line. Two small streams run north to south through the RY and drain into the unnamed stream immediately upstream of the BDDT.

2.2.6 Western Burning Ground

The WBG is a former burning ground located south of the IAA in the southwestern portion of the RFAAP-NRU (Figure 1 2). The WBG was used to dispose of materials contaminated with explosives, as well as off-spec explosives. A four-foot high berm surrounds the former burn area on three sides. Impacted soils were removed from the burn area in 1998 and replaced with clean backfill.

An unnamed pond was constructed to the west of the former burn area in the early 1990s. The pond is fed by a natural spring located at the head (northern extent) of the pond. The pond drains through a constant level drain into an unnamed creek south of the WBG. An unlined drainage ditch located to the north of the former burn area directs storm water runoff from the WBG into the unnamed pond. An access road to the pond was constructed along the northern boundary of the former burn area. This road was reportedly built on top of a layer of ash from the burning area.

Radford Army Ammunition Plant, Radford, Virginia

3. Summary of Historical Investigations

This section summarizes the results of historical investigations within the RFAAP-NRU. Characterization of the contaminant distribution in the six AOCs at RFAAP-NRU has been ongoing since 1997. The summary of the historical investigations presented below provides an overview of the data and information collected to date. In general, conclusions drawn from each phase of investigation are summarized here as they were previously presented in two earlier original reports (Shaw 2003; Shaw, 2007).

Detected constituent concentrations were compared to health-based screening levels. In addition, metals concentrations were compared to background 95-percentile Upper Tolerance Limits (UTLs) developed during a facility-wide background study (IT, 2001). The primary health-based screening levels used were the USEPA Region 3 Risk-Based Concentrations (RBCs) for residential and industrial soil (USEPA, 2007). Consistent with USEPA Region 3 guidance (USEPA, 1993) RBCs based on a non-cancer endpoint were reduced by a factor of 10. RBCs are standards developed by the USEPA considering human health exposure pathways and detected concentrations less than these standards are considered to represent a de minimis health risk. As the USEPA Region 3 RBC tables do not list lead, a residential health-based screening level of 400 mg/kg (USEPA, 1994) and an industrial screening level of 750 mg/kg (USEPA, 1999) were used for this constituent.

3.1 Building Debris Disposal Trench

Investigations at the BDDT have included surface water and sediment sampling events in 1997, 1998, and 2002; and soil sampling events in 1997, 1998, 2002, and 2004. With the exception of the 2004 soil-sampling event, the findings from these investigations are summarized in the September 2003 Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 2003). The results from the 2004 soil-sampling event are summarized in the October 2007 NRU Additional Characterization Sampling & Groundwater Investigation Data Report (Shaw, 2007). A summary of the analytical results for historical soil, sediment, and surface samples are presented in Tables 3-1, 3-2, and 3-3, respectively. Site maps depicting historical sampling locations are presented in Figures 3-1 and 3-2.

3.1.1 Soil

Between 1997 and 2004, 57 surface soil and 27 subsurface soil samples were collected from 84 soil borings advanced in various areas at the BDDT. While the

Radford Army Ammunition Plant, Radford, Virginia

analyte list varied between the various sampling events and locations, samples at the site were analyzed for TCL-VOCs, TCL-SVOCs, PAHs, and TAL-metals. Sampling activities focused on the soils below the debris in the trench and soils between the trench and the downgradient unnamed creek. Buried debris and impacted soil were removed from the trench in 1999. Rip-rap was backfilled in the trench after removal of the impacted soil. Impacted soils downgradient of the excavated trench area remain in place. The analytical data from the soil sampling events indicated the following:

- Several TAL metals were present in subsurface soil samples collected below the
 disposal trench and immediately downgradient of the disposal trench. Aluminum,
 arsenic, chromium, copper, iron, manganese, and vanadium have been detected
 in excess of residential RBCs; however, none of these constituents was detected
 in excess of background metals concentrations for the RFAAP-NRU.
- The PAH benzo(a)pyrene was detected in excess of the industrial-RBC in thirteen of the subsurface soil samples collected from the trench., Other PAHs including benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected above industrial RBCs in three of the samples collected from subsurface soils in the trench. Impacted soils within the debris disposal trench were removed and backfilled with rip-rap in 1999.
- The PAH benzo(a)pyrene was detected in excess of the industrial-RBC in 16 surface soil samples from the area between the trench and downgradient unnamed creek. Other PAHs including benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected in seven of the surface soil samples collected from the soil between the trench and unnamed creek. These four PAHs as well as benzo(k)fluoranthene and chrysene were also detected in excess of residential RBCs but below industrial RBCs in several other samples collected at the BDDT. No PAHs exceeding residential RBCs were found in any subsurface soil samples collected from the area between the trench and the unnamed creek.
- There were no VOCs, pesticides, herbicides, or other SVOCs detected above residential-RBCs in the soil samples collected from the BDDT.

3.1.2 Surface Water/Sediment

Thirteen collocated sediment and surface water samples were collected from the unnamed creek between 1998 and 2004. One additional sediment sample location

Radford Army Ammunition Plant, Radford, Virginia

collected in 1998 is depicted on Figure 3-1 (Shaw, 2003) in an area adjacent to the unnamed creek downgradient of the BDDT discharge point. All sediment samples were collected from 0-0.5 ft below ground surface (bgs). The analyte list varied somewhat between the various sampling events and locations, but generally, surface water and sediment samples at the site were analyzed for TCL-VOCs, TCL-SVOCs, PAHs, TAL-metals, pesticides, and herbicides. The analytical data from the surface water and sediment sampling events indicated the following:

- Several TAL metals were present in sediment samples collected from the unnamed creek. Aluminum, arsenic, chromium, iron, manganese, and vanadium have been detected in excess of residential-RBCs, however, none was detected in excess of background metals concentrations for the RFAAP-NRU.
- The PAH benzo(a)pyrene was detected in excess of the industrial-RBC in one of the thirteen sediment samples (DTSD10) collected from the unnamed creek in a location near Guard Road. Benzo(a)pyrene was also detected below the industrial RBC but above the residential RBC in two sediment samples (DTSD1-2 and DTSD05). Other PAHs including benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected above residential RBCs in sediment samples DTSD05 and DTSD10. All detections of PAHs in sediment samples were from locations in the unnamed creek downgradient of the disposal trench discharge point. No other PAHs exceeding residential RBCs were detected in any sediment samples collected from the unnamed creek.
- Benzo(a)pyrene was detected in excess of the industrial RBC in the sediment sample collected from adjacent the unnamed creek downstream of the BDDT discharge point. Other PAHs benzo(a)anthracene and benzo(b)fluoranthene were detected above residential RBCs but below industrial RBCs in this sample.
- A total of thirteen surface water samples have been collected during the course of the BDDT investigations. Eight samples have been collected from the unnamed creek downstream of the confluence with the BDDT and five samples collected from the unnamed creek upgradient of the confluence with the BDDT (Figure 3-1). Dieldrin was detected in one surface water sample upstream of the BDDT confluence, DTSW07 (0.00591 μg/l), and in one sample downstream of the BDDT confluence, DTSW05 (0.00548 μg/l). The detection of dieldrin in the upstream sample indicates that this constituent is not associated with the BDDT. The detected concentrations were above the Virginia Human Health Surface Water Standards (All Other Surface Waters), but were less than the Virginia Water

Radford Army Ammunition Plant, Radford, Virginia

Quality Standards for chronic effects in freshwater (VDEQ, 2007). No other analytes were detected in excess of applicable surface water quality standards.

 No explosives, herbicides, or PCBs were detected in any of the surface water samples collected from the unnamed stream near the BDDT.

3.2 Bag Loading Area (BLA)

Investigations at the BLA have included soil sampling events in 1997, 1998, and 2002; a surface water and sediment-sampling event in 2002; conductive flooring assessment events in 1998 and 2002; and an asbestos and lead based paint sampling event in 2005. The findings from the 1997 through 2002 investigations are summarized in the Septermber 2003 Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 204). A summary of the historical analytical results for the soil, sediment, and surface water samples collected at the BLA are provided in Tables 3-4, 3-5, and 3-6, respectively. The laboratory analytical results from the January 2005 asbestos and lead based paint sampling event are summarized in Table 3-7. A site map depicting historical sampling locations at the BLA is presented as Figure 3-3.

3.2.1 Soil

Approximately 27 surface soil samples and 13 subsurface soil samples were collected from the BLA between 1997 and 2002. The laboratory analyte list varied somewhat between the various sampling events and locations; but in general samples at the site have been analyzed for TCL-VOCs, TCL-SVOCs, PAHs, PCBs, TAL-metals, explosives, pesticides, and herbicides. Sampling activities focused on the soils around the buildings that contained the conductive flooring material and three former pole mounted transformer locations. The analytical data from the soil sampling events indicated the following:

- Several TAL metals were present in surface soil samples collected near the buildings with the conductive flooring material. Arsenic, iron, lead, and manganese have been detected in excess of industrial RBCs. However, of these constituents, only lead was detected in excess of background metals concentrations for the RFAAP-NRU.
- Lead was detected in excess of industrial RBCs in surface soil samples collected at SS-09 (1,970 mg/kg), BLASB03A (1,720 mg/kg), BLASS03 (3,850 mg/kg), and BLASS08 (8,790 mg/kg). Lead was detected in several additional soil sample

Radford Army Ammunition Plant, Radford, Virginia

locations around BLA buildings at concentrations above background levels but less than applicable RBCs. Lead was not detected above residential (or industrial) RBCs within any subsurface soil samples.

- The PAHs benzo(a)anthracene, benzo(b)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected in excess of industrial RBCs in surface soil sample BLASB02A (located in the central portion of the BLA). No PAHs were detected in excess of residential or industrial RBCs in the subsurface soil sample collected at this location (BLASB02B), or any other subsurface soil samples at the BLA. This indicates that any PAH impacts are confined to surface soils.
- Benzo(a)pyrene was also detected in excess of the industrial RBC (0.39 mg/kg) in surface soil samples collected at BLASB03A, BLASS05, BLASS07, BLASS09, BLASS10, and BLASS11. These samples were collected proximate to several of the buildings with the conductive flooring material.
- The PCB Aroclor-1254 was detected in two surface soil samples collected at the northeast corner of Building 405 (SS-09 and BLASS01). Sample SS-09 was collected in 1997 and had an Aroclor-1254 concentration of 8.3 mg/kg. Sample BLASS01 was collected in 2002 and had an Aroclor-1254 concentration of 3.23 mg/kg. These concentrations exceed the industrial RBC. Additional samples were collected to the north and east of SS-09 and BLASS01 that delineated impacts in those directions; however, no samples have been collected to the west.
- Aroclor-1254 was detected in excess of the industrial RBC in the surface soil sample collected at former transformer location BLATR02 (5.7 mg/kg). This PCB was also detected at former transformer location BLATR01; however, the detected concentration was below the residential RBC of 0.16 mg/kg. No other PCBs were detected at any of the former transformer sample locations.
- There were no VOCs, herbicides, pesticides, or explosives detected above residential RBCs.

3.2.2 Surface Water/Sediment

Sediment samples were collected from two dry storm water drainage culverts at the BLA; one located in the northeast corner of the BLA (BLASD01), the other located in the southwest corner of the BLA (BLASD02). Two surface water and sediment sample pairs were also collected from the unnamed stream located to the north of the BLA

Radford Army Ammunition Plant, Radford, Virginia

(BLASD04/BLASW04 and BLASD05/BLASW05). All samples were collected during a June 2002 sampling event and analyzed for TCL-VOCs, SVOCs, PAHs, pesticides, PCBs, TAL metals, explosives, and herbicides. There were no constituents detected in any of the sediment samples that exceeded residential RBCs. Dieldrin was detected in both of the surface water samples; however, the concentrations were less than the Virginia Water Quality Standard for chronic effects in freshwater (VDEQ, 2007).

3.2.3 Conductive Flooring

A conductive flooring assessment was conducted at the BLA in 2002 to characterize the flooring material. During this event flooring samples were collected from Buildings 405, 407, and 413 (one sample per building) (Shaw, 2003). Each of the flooring samples was analyzed for TCL-VOCs, TCL-SVOCs, TCL-pesticides/PCBs, explosives, and asbestos. The analytical results indicated that the PCB Aroclor-1254 and eight metals (aluminum, arsenic, cadmium, chromium, copper, iron, manganese, and nickel) were present a concentrations exceeding residential RBCs. Of these, arsenic, copper, and lead were present at concentrations that also exceeded industrial RBCs. Asbestos was detected at low concentrations (approximately 2 percent) in the flooring samples. The general conclusion of the assessment events was that the conductive flooring material was similar in all of the buildings (Shaw, 2003).

3.2.4 Asbestos and Lead Based Paint Sampling

Shaw Environmental, Inc., completed a field sampling event at the BLA in January 2005 to re-evaluate the specific types and amount of asbestos contained in the flooring material, soil adjacent to the building foundations, and on the walls of the buildings at the IAA. The sampling event included the collection of 2 samples of deteriorated flooring, 2 samples of intact flooring, 6 surface soil samples, and 2 wipe samples of the red staining observed on the building walls. Shaw also collected one white paint chip sample from a BLA building to evaluate the paint for lead. A summary of the laboratory analytical results from this sampling event is included in Table 3-7. The results indicated that asbestos concentrations in the flooring material ranged from 10.5% in the deteriorated flooring to 20.8% in the intact flooring material. Asbestos concentrations in soil ranged from 3.2% to 14.2%. All asbestos material was identified as chrysotile. The white paint chip sample was found to contain lead at a concentration of 306 mg/kg.

Radford Army Ammunition Plant, Radford, Virginia

3.3 Igniter Assembly Area (IAA)

Investigations at the IAA have included soil sampling events in 1997, 1998, and 2002; a sediment-sampling event in 2002; conductive flooring assessment events in 1998 and 2002 and an asbestos and lead based paint sampling event in 2005. The findings from the 1997 through 2002 investigations are summarized in the September 2003 Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 2003). A summary of the historical analytical results for the soil and sediment samples collected at the IAA are provided in Tables 3-8 and 3-9, respectively. A summary of the analytical results from the January 2005 asbestos and lead based paint sampling event is included in Table 3-10. A site map depicting historical sampling locations at the IAA is presented as Figure 3-4.

3.3.1 Soil

Approximately 50 surface soil samples and 43 subsurface soil samples were collected from the IAA between 1997 and 2002. While the majority of the samples were collected at discrete boring locations, two of the surface soil samples (IATP1A, IATP2A), and six of the subsurface soil samples (IATP1B, IATP1C, IATP1D, IATP2B, IATP2C, and IATP2D) were collected from test pits IATP1 and IATP2. These test pits were located next to Building 8102-1 and 8102-7. The analyte list varied somewhat between the various sampling events and locations, but has included TCL-VOCs, TCL-SVOCs, PAHs, PCBs, TAL-metals, explosives, pesticides, and herbicides. Sampling activities focused on the soils around the buildings that contained the conductive flooring material and eight former pole mounted transformer locations at the IAA. The analytical data from the soil sampling events indicated the following:

- The results from the sampling events conducted in 1997 and 1998 indicated the presence of TAL metals (e.g., aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, and zinc) at concentrations exceeding applicable residential RBCs. Chromium, copper, iron, lead and zinc were present at some locations at concentrations exceeding background UTLs. The samples were collected adjacent to several of the main igniter assembly buildings and from out parcel buildings located southeast of the main igniter assembly area (e.g. Building 504 and 505). The impacts were generally limited to surface soil and did not appear to exceed a depth of 2 ft bgs.
- Aroclor-1254 was detected at 10 mg/kg in 1998 subsurface soil sample 5043601224 collected 1-2 ft bgs adjacent to Building 504. This exceeds the

Radford Army Ammunition Plant, Radford, Virginia

industrial soil RBC for Aroclor-1254 of 1.4 mg/kg. Aroclor-1254 was not detected in excess of the industrial (or residential) RBC in the other subsurface soil samples collected near Building 504 during the 1998 investigation (5043121224, 504312436, and 504361224). However, there were exceedances of the residential RBC in surface soil samples 504312012, 504336012, 504360012.

- Three soil borings (IASB13, IASB14, and IASB15 were completed during the 2002 investigation to complete the delineation of Aroclor-1254 impacts around Building 504. Aroclor-1254 was not detected in excess of residential soil RBCs at any of these boring locations.
- During the 2002 investigation, Aroclor-1254 was detected in surface soil sample IASS05 (located next to Building 8101) at a concentration of 12 mg/L. There were no other samples collected in this area to confirm or delineate the extent of impact.
- The PCB Aroclor-1260 was detected at a concentration of 0.40 mg/kg at one (IATR07) of the eight former transformer locations sampled in 2002. This concentration exceeded the residential RBC for Aroclor-1260 (0.32 mg/kg), but was well below the industrial RBC of 1.4 mg/kg. PCBs were not detected at any of the other transformer sample locations.
- Several TAL metals were detected in surface and subsurface soil samples collected at the IAA during the 2002 sampling event. Aluminum, arsenic, chromium, copper, iron, lead, manganese, thallium, and vanadium were detected at concentrations in excess of residential soil RBCs. Arsenic, copper, iron, lead, and manganese were also detected in excess of industrial RBCs at some locations. However, only arsenic at IASB12B (21.4L mg/kg) and IATP2A(28.8K mg/kg); copper at IATP2A (7,070 mg/kg)]; lead at IASB14A (1,480 mg/kg)]; and iron at IASB3A (52,60 mg/kg), IASB12B (77,600 mg/kg) and IASB12C (66,000 mg/kg) were detected at concentrations exceeding industrial RBCs and background metals concentrations for the RFAAP-NRU.
- Lead was detected in excess of background soil concentrations (26.8 mg/kg), but below the residential soil RBC of 400 mg/kg, in several additional surface soil samples.
- With the exception of one sample collected in 1998 (TR01A), PAHs were not detected in excess of industrial RBCs in any of the soil samples collected at the IAA. Benzo(a)anthracene (3,540 mg/kg), benzo(b)pyrene (5,240 mg/kg),

Radford Army Ammunition Plant, Radford, Virginia

benzo(b)fluoranthene (12,590 mg/kg), dibenz(a,h)anthracene (940 mg/kg), and indeno(1,2,3-cd)pyrene (6,060 mg/kg) were detected at sample location TR01A. PAHs were not detected in an adjacent sample collected at this location (TR01B); therefore, PAHs are not considered to be of concern for this area.

- The PAHs benzo(a)anthracene (0.39 mg/kg), benzo(b)pyrene (0.35 mg/kg), benzo(b)fluoranthene (0.49 mg/kg), and indeno(1,2,3-cd)pyrene (0.29 mg/kg) were detected in excess of their residential soil RBCs in surface soil sample IASS05 (located next to Building 8101). PAHs were not detected in excess of residential RBCs in any other surface or subsurface soil samples at the IAA.
- There were no VOCs, herbicides, pesticides, or explosives detected above residential RBCs at the IAA.

3.3.2 Sediment

Nine sediment samples (IASD04 through IASD12) were collected from dry surface water drainage ditches during the 2002 site investigation. Two samples (IASD11 and IASD12) were collected from the storm water drainage swales located closest to the main igniter assembly buildings, the remaining seven samples were collected from the outfalls of surface water drainage culverts that pass under surrounding IAA roads. The sediment samples were analyzed for TCL-VOCs, SVOCs, pesticides, PCBs, TAL metals, explosives, and herbicides. VOCs, pesticides, herbicides, and explosives, where detected, were all below applicable residential RBCs.

Lead was detected at sediment sample location IASD06 (884 mg/kg) in excess of the industrial RBC (750 mg/kg), and at sample location IASD12 (643 mg/kg) in excess of the residential soil RBC (400 mg/kg). These locations both receive surface water runoff from the main igniter assembly building area. All other metals detections in sediment were less than industrial RBCs and/or background UTLs.

The PAHs benzo(a)anthracene (6.9 mg/kg), benzo(a)pyrene (5.9 mg/kg), benzo(b)fluoranthene (11 mg/kg), and indeno(1,2,3-cd)pyrene (4.2 mg/kg) were detected in excess of their industrial soil RBCs at sediment sample location IASD09. Some of these constituents were also detected a concentrations slightly in excess of residential soil RBCs at IASD05, IASD10, IASD11, and IASD12. Due to the proximity of the sediment samples to roads at the IAA, the PAH detections can likely be attributed to deteriorating asphalt rather than from the buildings.

Radford Army Ammunition Plant, Radford, Virginia

3.3.3 Conductive Flooring

Conductive flooring assessment events were conducted at the IAA in 1998 and 2002 to characterize the flooring material. Two flooring samples were collected during separate sampling events in 1998. The 2002 assessment event was more comprehensive and included the collection of 10 flooring samples. The samples were collected from IAA Buildings, 502, 504, 509, 522, 8102-A, 8102-2, 8102-7, and an unnamed building between Buildings 522 and 529. Samples were analyzed for TCL-VOCs, TCL-SVOCs, TCL-pesticides/PCBs, explosives, and asbestos. One sample was also submitted for TCLP analysis (metals, VOCs, SVOCs, pesticides, and herbicides). The analytical results indicated that five metals (arsenic, chromium, copper, iron, and lead), one PAH (benzo(a)pyrene, and one PCB (Aroclor-1254) were present in the flooring at concentrations exceeding industrial soil RBCs. The metals, aluminum, barium, cadmium, manganese, nickel, and vanadium were also detected in the flooring samples at concentrations exceeding residential soil RBCs. VOCs, pesticides, and explosives were not detected at concentrations exceeding residential RBCs. Asbestos was detected within the samples at approximately 2-percent composition. The TCLP analysis indicated that no constituents exceeded regulatory guidelines. The general conclusion of the assessment events was that the conductive flooring material was similar in all of the buildings and that the material is not a hazardous waste (Shaw, 2003).

3.3.4 Asbestos and Lead Based Paint Sampling

Shaw Environmental, Inc., completed a field sampling event at the IAA in 2005 to reevaluate the specific types and amount of asbestos contained in the flooring material, soil adjacent to the building foundations, and on the walls of the buildings at the IAA. The sampling event included the collection of 3 samples of deteriorated flooring, 3 samples of intact flooring, 9 surface soil samples, and 3 wipe samples of the red staining observed on the building walls. Shaw also collected 3 paint chip samples from the IAA buildings to evaluate the paint for lead. A summary of the laboratory analytical results from this sampling event is included in Table 3-10. The results indicated that asbestos concentrations in the flooring material ranged from 7.1% in the deteriorated flooring to 23.7% in the intact flooring material. Asbestos concentrations in soil ranged from 0.1% to 15.0%. All asbestos material was identified as chrysotile. The lead concentrations in the paint chip samples were found to range from 1,100 mg/kg to 49,500 mg/kg.

Radford Army Ammunition Plant, Radford, Virginia

3.4 Northern Burning Ground

Investigations at the NBG have included soil sampling events in 1997, 1998, 1999, 2002, and 2004; a geophysical survey in 1998; and sediment sampling events in 2002 and 2004. The 2004 soil investigation included on-site screening of soils with X-Ray Fluorescence (XRF) in addition to laboratory analysis for metals. With the exception of the 2004 soil and sediment sampling activities, the findings from these investigations are summarized in the February 2004 Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 204). The results from the 2004 sampling events are summarized in the October 2007 NRU Additional Characterization Sampling & Groundwater Investigation Data Report (Shaw, 2007). A summary of the analytical results for historical soil and sediment samples are presented in Tables 3-11 and 3-12, respectively. Site maps depicting historical sampling locations at the NBG are presented in Figures 3-5 and 3-6.

3.4.1 Soil

Between 1997 and 2004, approximately 92 soil samples (47 surface soil samples and 45 subsurface soil samples) were collected at the NBG and submitted for laboratory analysis to delineate the extent of impacts associated with the former burning ground operations. The 2004 sampling event also included the collection of 291 surface soil samples for field screening (lead) to further assist in the delineation efforts. Following is a brief summary of the observations from the historical investigation activities:

- Lead and chromium are the primary COIs for the NBG.
 - Lead was detected in excess of the industrial soil RBC (750 mg/kg) in 12 surface soil samples and 2 subsurface soil samples. Lead was detected at concentrations up to 111,000 mg/kg in surface soil (NBGSB22A) and 903 mg/kg in subsurface soil (NBGSB11C).
 - Chromium was detected in excess of its industrial RBC (306.6 mg/kg) in 8 surface soil samples and 1 subsurface soil sample. Chromium was detected at concentrations up to 25,700 mg/kg in surface soil (NBGSB11A) and 352 mg/kg in subsurface soil (NBGSB21C).
 - The lead and chromium exceedances were detected in the same samples and were confined to the main burn area.
 - While lead and chromium were detected in a limited number of subsurface soil samples, the impacts generally appear to be confined to surface soils (0-0.5 ft bgs).

Radford Army Ammunition Plant, Radford, Virginia

- Aroclor-1254 was detected above the industrial RBC (1.4 mg/kg) in surface soil at sample locations NBGSB11A (3.4 mg/kg), NBGSB12A (2.5 mg/kg), NBG13A (3.4 mg/kg), and NBGSB22A (4.6 mg/kg). The impacts appear to be limited to surface soil (0-0.5 ft bgs) because Aroclor-1254 was not detected in subsurface soil samples collected at these four locations. The impacted soils are located in the main burn area and coincide with lead impacts.
- TCLP analysis conducted on soil samples during the 1999 sampling event indicated that lead was present in three samples in excess of the TCLP regulatory limit of 5,000 µg/l.
- The XRF field screening confirmed the findings of previous investigations that the metals impacts are generally confined to the former burn area.
- Dioxins/furans, explosives, herbicides, pesticides, PAHs, and VOCs were not detected in soil at concentrations exceeding residential RBCs.

3.4.2 Sediment

Four sediment samples have been collected from the dry drainage ditch located to the north of the NBG, one in 2002 and three in 2004 (Shaw, 2003; Shaw, 2007). The 2002 sample (NBGSD01) was collected from the outfall of the culvert that flows underneath the paved road (Guard Road) to the north of the site. The three 2004 sediment samples (NBGSD02, NBGSD03, and NBGSD04) were collected from the portion of the ditch located between the NBG and the road. Following is a brief summary of the observations from these investigations.

- NBGSD01 contained benzo(a)pyrene (0.21mg/kg) and benzo(b)fluoranthene (0.31 mg/kg) at concentrations above their respective residential RBCs of 0.022 mg/kg and 0.22 mg/kg (but below industrial RBCs). These detections can likely be attributed to degrading asphalt from the paved road.
- Several metals, including aluminum, arsenic, chromium, iron, manganese, and vanadium were detected in NBGSD01 at concentrations above residential RBCs; however, all of the detected concentrations were below background concentrations for the RFAAP-NRU. Lead was also detected at NBGSD01 (159 mg/kg) at a concentration exceeding background concentrations, but below residential RBCs.

Radford Army Ammunition Plant, Radford, Virginia

- Lead was detected at concentrations exceeding the industrial RBC (750 mg/kg) at sample locations NBGSD03 (3,500 mg/kg) and NBGSD04 (2,200 mg/kg).
 Chromium was also detected at NBGSD03 (297 mg/kg) at a concentration exceeding its industrial RBC (306 mg/kg).
- No pesticides, herbicides, explosives, PCBs, or dioxins/furans were detected above applicable residential RBCs.

3.5 Rail Yard (RY)

Investigations at the RY have included soil sampling events in 1997, 1998, 1999, and 2002; sewer sludge sampling events in 1997 and 1998; and surface water and sediment sampling events in 2002. The findings from these investigations are summarized in the February 2004 Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 204). A summary of the analytical results for historical soil, sediment, and surface water samples are presented in Tables 3-13, 3-14, and 3-15, respectively. A site map depicting historical sampling locations at the RY is presented in Figure 3-7.

3.5.1 Soil

Approximately 29 surface soil samples and 15 subsurface soil samples were collected from the RY between 1997 and 2002 for the purpose of characterizing the site and identifying potential impacts to the environment from historical operations. The data from the historical investigations appear to indicate that there are no significant areas of environmental concern at the RY. Following is a brief summary of the historical soil data:

- Several TAL metals (e.g., aluminum, arsenic, chromium, iron, manganese, thallium, and vanadium) were detected at concentrations exceeding residential RBCs; arsenic, and iron were also detected in several samples at concentrations exceeding industrial RBCs. However, none of the detected metals exceeded both residential RBCs and background metals concentrations for the RFAAP-NRU.
- Aroclor-1254 was detected at a concentration of 1.7 mg/kg in one surface soil sample (SS-08) collected in next to a transfer platform 1997. This detection exceeded the industrial RBC of 1.4 mg/kg. A second sample collected at this location in 1998 (SS-08a) indicated an Aroclor-1254 concentration of 1.0 mg/kg, which exceeds the residential RBC of 0.16 mg/kg, but is less than the industrial

Radford Army Ammunition Plant, Radford, Virginia

RBC. A third sample collected at this location in 2002 (RYSS03) had an Aroclor-1254 concentration of 0.37 mg/kg, which confirms that the Aroclor-1254 concentration in this area is below the industrial RBC.

- Three surface soil samples (RYTR01, RYTR02, and RYTR03) were collected from the locations of former pole mounted transformers during the 2002 investigation. The analytical results indicated that one PCB (Aroclor-1254) was detected at sample location RYTR02 at a concentration of 0.22 mg/kg. This concentration exceeds the residential RBC for Aroclor-1254 of 0.16 mg/kg, but is an order of magnitude less than the industrial RBC. No PCBs were detected at the other transformer sample locations.
- During the 2002 sampling event, Aroclor-1254 was also detected at sample location RYSS07 at 1.2 mg/kg. This concentration exceeds the residential RBC but is less than the industrial RBC.
- The PAH benzo(a)pyrene was detected during the 2002 investigation at sample location RYSS07 at a concentration of 0.55 mg/kg using an SVOC analytical method (USEPA Method 8270); however, a separate analysis conducted on this sample using a PAH specific, low-level USEPA Method 8270 analysis indicated that the concentration of benzo(a) pyrene was 0.019 mg/kg (which is below the residential RBC of 0.022 mg/kg).
- Benzo(a)pyrene was detected in excess of the industrial RBC of 0.39 mg/kg in one soil sample collected in 1998 (TR-02A). The detected benzo(a)pyrene concentration (0.40J mg/kg) was qualified by the laboratory as estimated, and benzo(a)pyrene was not present in another sample collected at this location (TR02-C)
- No other PAHs were detected in excess of industrial screening levels at the RY.
- The pesticide dieldrin (0.27 mg/kg) and SVOC pentachlorophenol (830 mg/kg) were detected in excess of their respective industrial RBCs in one sample collected at a former transformer location (TR-02C) in 1998. The industrial RBC for dieldrin is 0.18 mg/kg, and the industrial RBC for pentachlorophenol is 24 mg/kg. These constituents, which are typically associated with wood preservatives and pesticides used on utility poles, were not present in a second sample collected at this location TR02A or within any other soil samples at the RY. Therefore,

Radford Army Ammunition Plant, Radford, Virginia

dieldrin and pentachlorophenol are not considered an environmental concern for this site.

 No explosives, herbicides, or VOCs have been detected in soil in excess of residential (or industrial) RBCs.

3.5.2 Sediment and Sludge

A total of 14 sediment samples were collected from the RY between 1998 and 2002 from the various on-site storm water drainage ditches, downgradient stream, and storm water retention pond. The samples were analyzed for explosives, herbicides, pesticides, PAHs, PCBs, VOCs, SVOCs, and metals. The analytical data indicated that explosives, herbicides, pesticides, PCBs, and VOCs were not present at concentrations exceeding residential or industrial RBCs.

The PAH benzo(a)pyrene was detected at five sample locations (RYSD01, RYSD03, RYSD06, RYSD07, RYSD10) at concentrations exceeding the residential RBC of 0.022 mg/kg; however, the detected concentrations were low and were qualified by the laboratory as estimated. No other PAHs were detected in excess of residential RBCs. The PAHs that were detected at the RY could likely be attributed to degrading asphalt from the paved roads that surround the RY.

The metals aluminum, arsenic, chromium, iron, manganese, and vanadium were detected in excess of residential RBCs at most sample locations. The detected concentrations of iron (79,600 mg/kg) and vanadium (110 mg/kg) at RYSD08, and arsenic at all sample locations also exceeded industrial RBC. However, the reported concentrations of metals were below, or in the range of, background levels at the site; therefore it is unlikely that sediments have been impacted by the RY.

In addition to the sediment sampling activities, three sludge samples (SL05, SL08, and SL108) were collected from the RY sewer system between 1997 and 1998. The analytical data from these samples indicated that several metals (e.g. aluminum, arsenic, chromium, cobalt, iron, manganese, and vanadium) were present at concentrations exceeding residential RBCs. The detected concentrations of arsenic and iron, also exceeded industrial RBCs, but like the sediment data, the concentrations were similar to those observed in background soils. The PCB Aroclor-1254 was detected in one sludge sample (SL-08) at a concentration of 0.22 mg/kg, and the PAH benzo(a)pyrene was detected in sample SL05 at a concentration of 0.070J. These

Radford Army Ammunition Plant, Radford, Virginia

concentrations exceeded the respective residential RBCs for these constituents, but were an order of magnitude below the industrial RBCs.

3.5.3 Surface Water

A total of eight surface water samples have been collected during the course of the RY RI activities, including seven surface water samples during the 2002 investigation. The 2002 samples were collected from the spring located downgradient of the RY (RYSW02), the storm water retention pond (RYSW03 and RYSW04), the downgradient unnamed streams (RYSW05, RYSW12, and RYSW13), and from ponded water near one of the RY transfer platforms (RYSW15). The pesticide dieldrin was detected in two samples collected RYSW12 (0.00719J μ g/L) and RYSW13 (0.0065 μ g/L); however, the detected concentrations were less than the Virginia Water Quality Standards for chronic effects in freshwater. Low levels of dieldrin were detected in other sample collected from this stream; including a sample where the stream flows on to the RFAAP-NRU. 4,4'-DDT was also detected at sample location RYSW13 (0.01J μ g/L); however, this detection was qualified by the laboratory as estimated. No other surface water samples at the RY contained 4,4'DDT; therefore, it is presumed that this detection is not associated with the RY. No other analytes were detected in excess of applicable surface water quality standards.

3.6 Western Burning Ground (WBG)

Investigations at the WBG have included soil, surface water, and sediment sampling events in 1997, 1998, 1999, 2002, and 2004; and a fish tissue/bioaccumulation study in 2004. The findings from the 1997 through 2002 investigation activities are summarized in the September 2003 Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG (Shaw, 2003). The results from the 2004 activities are summarized in the October 2007 NRU Additional Characterization Sampling & Groundwater Investigation Data Report (Shaw, 2007). A summary of the analytical results for historical soil, sediment, and surface water samples are presented in Tables 3-16, 3-17, and 3-18, respectively. Site maps depicting historical sampling locations at the WBG are presented in Figures 3-8 and 3-9.

3.6.1 Soil

Between 1997 and 2004, 102 surface and subsurface soil samples were collected from 53 soil borings advanced in various areas at the WBG. Additionally in 1999, 19 test pits were excavated from the burn area, 43 samples were collected from the bottoms

Radford Army Ammunition Plant, Radford, Virginia

of the test pits, and clean fill was used to backfill the pits. The analyte list varied somewhat between the various sampling events and locations, but in general, samples at the site have been analyzed for TCL-VOCs, TCL-SVOCs, PAHs, PCBs, TAL-metals, explosives, pesticides, dioxins and herbicides. Sampling activities focused on the soils around the burn pit and associated berm, the dirt road, and areas between the burn pit and the pond. The analytical data from the soil sampling events indicated the following:

- Several TAL metals were present in surface and subsurface soil samples collected near the burn area and dirt road leading southwest from the burn area. Aluminum, antimony, arsenic, chromium, copper, iron, lead, manganese, and vanadium have been detected in excess of industrial RBCs. However, of these constituents, lead and arsenic were the only COIs detected a concentrations in excess of both the industrial RBCs and background UTLs. Copper was detected above residential-RBCs and background concentrations in two samples (WBGSB1A and WBGSB3A) and zinc was detected above residential-RBCs and background concentrations in two samples (WBGSB2A and WBGSB3A). Additionally, in sample WBGSB22B, antimony and chromium were detected above residential-RBCs and background concentrations, and arsenic and iron were detected above industrial-RBCs and background concentrations. No other metals were detected at concentrations significantly above background concentrations.
- Lead was detected in excess of industrial RBCs in four surface soil samples collected in the burn area (WBGSB1A, WBGSB2A, WBGSB3A, and WBGSB4A) and in one sub-surface soil sample collected from the dirt road (WBGSB22B).
- Lead was detected in excess of industrial RBCs in only one of the test pit soil samples (WBGTP1B2) collected from approximately 3.5 ft bgs.
- TCLP metals analysis was performed on 20 surface soil samples collected at the WBG in 1999. TCLP leaching standards were not exceeded in any of the samples.
- The PAH benzo(b)pyrene was detected in excess of the industrial RBC in one surface soil sample collected in the burn area (WBGSB24A), and in two surface soil samples from the drainage ditch northwest of the burn area (WBGSB25A and WBGSB27A). No PAHs were detected in excess of residential or industrial RBCs in the subsurface soil sample collected at these locations, or any other surface of subsurface soil sample at the BLA.

Radford Army Ammunition Plant, Radford, Virginia

- Aroclor-1254 was detected at a concentration below the industrial RBC but above the residential RBC of 0.16 mg/kg in one subsurface soil sample collected from a depth of 2 to 4 ft bgs at the dirt access road location WBGSB22B (0.87 mg/kg).
 No other PCBs were detected at any other sample locations.
- There were no VOCs, herbicides, pesticides, or explosives detected above residential RBCs.
- In 2004, 55 surface and 26 subsurface soil samples were collected for XRF screening to delineate the extent of lead impacts at the WBG (Shaw, 2007). The 21 surface soil and 10 subsurface soil samples as described above were collected at selected XRF locations for laboratory analysis as confirmatory samples. Laboratory confirmation results generally correlated with XRF values with the exception of six samples that had more than approximately 10-20 percent variance from the XRF concentrations. The XRF screening data indicated that lead was present a concentrations exceeding residential screening levels (400 mg/kg) in approximately 5 subsurface soil sample locations collected underneath the site access road. Screening results for soil samples collected north and south of the access road indicated lead concentrations below the residential RBC.

3.6.2 Surface Water/Sediment

Two sediment samples were collected from the pond in 1997. A total of 15 surface water and sediment sample pairs were collected from the pond and surrounding streams between 1998 and 2002. In 2004, 14 sediment samples were collected from the pond for XRF screening and laboratory confirmation samples were collected from 10 of these locations. Sediment samples were collected from 0-0.5 ft bgs. The analyte list varied somewhat between the various sampling events and locations, but generally, surface water and sediment samples at the site have been analyzed for TCL-VOCs, TCL-SVOCs, PAHs, TAL-metals, explosives, pesticides, dioxins and herbicides. The analytical data from the surface water and sediment sampling events indicated the following:

 Several TAL metals were present in sediment samples collected from the pond and nearby streams. Aluminum, arsenic, chromium, iron, lead, manganese, and vanadium have been detected in excess of industrial RBCs. Of these metals only arsenic at WBGSD13 (30.4 mg/kg); chromium at WBGSD10 (15,400 mg/kg); iron at WBGSD13 (293,000 mg/kg); and lead at WBGSD5-2 (899 mg/kg) and

Radford Army Ammunition Plant, Radford, Virginia

WBGSD10 (109,000 mg/kg) were detected at concentrations greater than both the industrial RBCs and background UTLs.

- 14 sediment samples from the unnamed pond were collected for XRF screening to help delineate lead impacts in sediments in the pond near the access road.
- Ten sediment samples were collected at selected XRF locations for confirmatory laboratory analysis. Two samples (WBGSD05-2 and WBGSD10) collected from the northern portion of the pond, near the access road, contained lead at concentrations exceeding industrial-RBCs. No other samples contained lead above industrial RBCs; however, one sediment sample (WBGSD17) collected from the northern portion of the pond contained lead at concentrations exceeding the residential-RBC. Lead impacts in the pond were generally defined by these sample results.
- One sediment sample (WBGSD09) collected from the unnamed stream downgradient of the pond, near the railroad tracks, contained three PAH's exceeding industrial RBCs [benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene], and one exceeding the residential-RBC [indeno(1,2,3-cd)pyrene]. No other samples contained PAHs above industrial RBCs; however, two sediment samples collected from the upper arm of the pond (SD-01 and WBGSD07) contained benzo(b)pyrene at concentrations exceeding the residential RBC.
- A total of fifteen surface water samples have been collected during the course of the WBG investigations. Six samples have been collected from the unnamed pond, three additional samples from the upper arm of the unnamed pond near Wiggins Spring, three samples collected from the downstream unnamed creek, and three samples collected from remote ponded water features near the unnamed pond (Figure 3-9). Dieldrin was detected in one surface water sample WBGSW08 (0.00521 μg/l) collected from the unnamed creek and in two samples, WBGSW13 (0.00358 μg/l) and WBGSW14 (0.00901 μg/l) collected from ponded water in the vicinity of the unnamed creek. The detected concentrations were above the Virginia Human Health Surface Water Standards (All Other Surface Waters), but were less than the Virginia Water Quality Standards for chronic effects in freshwater. No other analytes were detected in excess of applicable surface water quality standards.

Radford Army Ammunition Plant, Radford, Virginia

3.6.3 Fish Tissue

Seven bluegill and one white sucker were collected for whole body analysis and seven bluegill and one common carp were collected for fillet analysis in 2004 (Shaw, 2007). The tissue samples were analyzed for total lipids, TAL metals, and PCBs. The tissue samples indicated that PCBs were not detected in any of the samples, and metal concentrations appeared to be within natural background concentrations.

3.7 Groundwater

In order to investigate potential impacts to groundwater at the facility, a groundwater-sampling program was instituted at the RFAAP-NRU in 2007 (Shaw, 2007). This program included the installation and sampling of eleven monitoring wells within the western portion of the RFAA-NRU (Figure 3-10). Four monitoring wells were installed around the perimeter, and downgradient, of the Igniter Assembly Area; two monitoring wells were installed downgradient of the Bag Loading Area; two were installed at the Northern Burning Ground; and three were installed at the Western Burning Ground. Although groundwater is generally encountered in the bedrock, monitoring wells IAAMW-01, IAAMW-02, and IAAMW-03 were installed in the overburden. The remaining wells were installed in bedrock. A table presenting the monitoring well construction details is presented as Table 3-19. Additional details on the 2007 monitoring well installation and sampling activities are presented in the NRU Additional Characterization Sampling & Groundwater Investigation Data Report (Shaw, 2007).

Groundwater samples collected from the monitoring wells during the 2007 event were analyzed for VOCs, SVOCs, PAHs, PCBs, pesticides, herbicides, explosives, dioxins/furans, metals, perchlorate, total organic halides (TOX), and total organic carbon (TOC). The laboratory analytical results are summarized in Table 3-20. VOCs, SVOCs, PAHs, PCBs, pesticides, herbicides, explosives, and perchlorate were not detected in any of the samples at concentrations exceeding applicable USEPA Federal Maximum Contaminant Levels (MCLs) (USEPA, 2006) or the USEPA Region III RBCs.

Arsenic, beryllium, chromium and lead were detected in the groundwater sample collected from IAAMW-01 at concentrations greater than the MCLs. However, this well is a shallow well that was installed in the overburden. During the sampling event, it was noted that the well was a slow producer and insufficient groundwater could be recovered to collect the volume required to analyze for the full analytical suite. Although groundwater sampling parameters were not reported (Shaw, 2007), it is likely that the metals detected are associated with particulates in the sample due to the lack

Radford Army Ammunition Plant, Radford, Virginia

of groundwater. Lead was also detected in the groundwater sample collected from WBGMW-01 at a concentration (34.3 μ g/L) greater than the MCL (15 μ g/L). Aluminum, iron, and manganese were also detected at concentrations greater than the secondary MCLs; however, the concentrations may be within naturally occurring levels for this geological formation.

The dioxin 2,3,7,8-TCDD was detected in three groundwater samples (NGBMW-01, BLAMW-02 and IAAMW-04) at concentrations greater than the USEPA Region 3 tap water RBC (0.00045 μ g/L). It should be noted that 2,3,7,8-TCDD was not detected in the duplicate groundwater sample collected at NGBMW-01. In addition, while TCDD was not detected in the rinse blank, 19 other dioxin compounds were detected, indicating a potential cross contamination issue associated with the sampling or laboratory equipment. Lastly, the low-level concentrations of 2,3,7,8-TCDD were all detected below the reporting limit and were qualified as estimated.

Radford Army Ammunition Plant, Radford, Virginia

4. Data Gaps and Proposed RI Sampling Plan

The purpose of this section is to summarize the data gaps and to present the proposed sampling plan required to fill these identified data gaps. A significant amount of characterization has been performed to date, and therefore only limited specific data gaps remain for the areas in the RFAAP-NRU. The overall objective of these data collection activities is to complete to the extent practical the characterization of the RFAAP-NRU and to gather the necessary information to support the development of an RI Report, Risk Assessment, and evaluation and selection of remedial technologies to address the areas of concern.

Data will be collected that will enable the Army to quantify the extent of contamination to both industrial and residential standards. The current, and most likely future, use of the RFAAP-NRU is military/industrial. Accordingly, consistent with CERCLA, the remediation goals will be based on military/industrial land use scenarios. However, life-cycle costs will also be evaluated during the feasibility study process and compared against clean closure (i.e., remediation to residential standards). Should clean closure be financially advantageous to the Army in the long term, then clean closure may be recommended on a case-by-case basis.

A dynamic approach has been developed for the delineation activities proposed in this Work Plan. The dynamic investigation approach presented herein streamlines the delineation process by field screening data and quick-turn laboratory analytical results to dictate the need for, and placement of, additional samples to complete the delineation process. This approach provides the opportunity to complete the final delineation activities for the AOCs in a single remaining investigation, rather than in sequential steps which could likely delay implementation of future corrective measures.

4.1 Building Debris Disposal Trench (BDDT)

4.1.1 Data Gaps

The majority of the remedial investigation work at the BDDT has been completed during previous phases of investigation, including evaluation of impacts to surface and subsurface soil, creek sediments and creek surface water. The following sections provide further details on remaining data gaps at the BDDT.

Radford Army Ammunition Plant, Radford, Virginia

4.1.1.1 Soils

PAHs and TAL metals have been detected in excess of residential and industrial RBCs in soil at the BDDT; however, metal concentrations were within naturally occurring background levels. Previous investigations have identified PAH impacts in subsurface soil below the disposal trench and in adjacent areas downgradient of the trench. PAH impacts were also identified in surface soils between the disposal trench and the downgradient unnamed creek. PAH impacted soils within the trench were excavated during a 1999 removal action that also included the removal of the building debris material; therefore, the remaining PAH impacts in soil are limited to the area between the disposal trench and the unnamed creek. Previous sampling efforts, however, have not fully delineated the vertical extent of impacts adjacent to the former disposal trench and the lateral extent of impacts in the area between the disposal trench and the unnamed creek. Specifically, the data gaps that exist include:

- Vertical extent of PAH impacts in subsurface soils in the area immediately downgradient of the disposal trench.
- Lateral extent of PAH impacts in surface soils between the disposal trench and the unnamed creek.

4.1.1.2 Sediments

PAHs and TAL metals have been detected in excess of residential and industrial RBCs in sediment from the unnamed creek at the BDDT; however, metals concentrations were within naturally occurring background levels. PAHs were detected in excess of residential or industrial RBCs in two of the three sediment sample locations downgradient of the BDDT. Sediment samples collected from three locations in the creek, upgradient of the confluence with the BDDT did not contain PAHs. The data gaps that exist in the creek sediments at the BDDT include:

 Evaluation of PAH concentration trends within sediment in the unnamed creek downstream of the confluence with the BDDT.

4.1.1.3 Surface Water

TAL metals, VOCs, SVOCs, and pesticides have been detected in surface water samples from the unnamed creek in locations upstream and downstream of the confluence with the BDDT. However, all constituents were detected at concentrations

Radford Army Ammunition Plant, Radford, Virginia

below the Virginia Water Quality Standards for chronic effects in freshwater and do not appear to be related to activities at the BDDT. The remaining data gaps that exist in the creek surface water at the BDDT include:

 Evaluation of current surface water conditions in the unnamed creek downstream of the confluence with the BDDT.

4.1.2 Proposed Activities

The following activities are proposed to complete the remedial investigation activities at the BDDT:

- ARCADIS will advance two hand auger borings in the area downgradient and adjacent to the former disposal trench for collection of subsurface soil samples from depths of 2-3 ft bgs, 3-4 ft bgs, and 4-5 ft bgs. Samples from 2-3 ft bgs will be analyzed for PAHs by USEPA Method 8270C SIM and the deeper samples will be placed on hold pending initial results. The locations of the two proposed borings (DTSB-83 and DTSB-84) are depicted in Figure 4-1. These samples are intended to define the vertical extent of PAH impacts to subsurface soil within the area immediately downgradient of the trench.
- ARCADIS will advance six hand auger borings approximately 10 feet away from the impacted previous sample locations or apparent outer edges of the delta shaped area downgradient of the BDDT. Surface soil samples will be collected from 0-0.5 ft bgs in each boring and sent to a laboratory for analysis of PAHs by USEPA Method 8270C SIM. The samples will be analyzed with a 48-hour turnaround time to provide rapid results and allow sampling adjustments to be made at the time of the field event. The locations of the six proposed initial borings (DTSB-85 through DTSB-90) are depicted in Figure 4-1. These samples are intended to establish the outer perimeter of PAH impacts at the delta. If PAH impacts above residential RBCs are detected in any sample, an additional sample will be collected from an area approximately 5 to 10 ft from the initial sample in a direction away from the impacted area. The collection of these additional samples are intended to refine the PAH delineation efforts at the trench delta and enable risk assessment and feasibility studies to be completed.
- ARCADIS will collect sediment and surface water sample pairs from the unnamed creek downgradient of the BDDT. The samples will be collected from the three downstream sample locations included in the 2002 BDDT investigation (DTSD05,

Radford Army Ammunition Plant, Radford, Virginia

DTSD06, and DTSD10). The sediment and surface water samples will be analyzed for TCL-PAHs and the data will be utilized to evaluate concentration trends within the stream to determine the potential for on-going impacts to the stream from the BDDT soils. The data will also be used to assist in the HHRA and SLERA that will be presented in the RI. The locations of the proposed samples are depicted on Figure 4 1.

A summary of the proposed sampling program for the BDDT is presented in Table 4 1.

4.2 Bag Loading Area (BLA)

4.2.1 Data gaps

4.2.1.1 Conductive Flooring

Based on the results of previous investigations at the site, the degraded conductive flooring in the various BLA buildings has been identified as the source of metals and asbestos impacts to surrounding surface soils. A 2002 assessment of the conductive flooring material indicated that the degraded flooring contained elevated levels of several TAL metals, asbestos, PAHs, and PCBs. TCLP analyses have also been completed. As such, the conductive flooring material has been well characterized. However, the following information will need to be collected to assist in evaluating remedial alternatives for the conductive flooring material:

• A complete understanding of the number, location, size, and condition of the site buildings that contain the conductive flooring material.

4.2.1.2 Soils and Sediments

TAL metals, PAHs, and PCBs have been detected in excess of industrial RBCs in soils at the BLA. While some of the metals detections may be related to naturally occurring background levels, previous sampling events have confirmed that surface soils near many site buildings may have been impacted by degraded conductive flooring material. The previous investigations have indicated that the impacts are generally confined to surface soil (0-0.5 ft bgs) and that the contaminants have fairly low mobility (i.e. concentrations decrease rapidly with depth or distance from the structures). The degraded conductive flooring material that has impacted the soil exhibits a dark red color and based on visual observations of the site, the impacts to surface soil generally appear to be confined to the areas in the immediate vicinity of the buildings. However,

Radford Army Ammunition Plant, Radford, Virginia

previous sampling efforts have not delineated the extent of impacts. Specifically, the data gaps that exist include:

- Lateral extent of metals and asbestos impacts surrounding buildings constructed with conductive flooring.
- Lateral extent of PAH impacts in surface soil around the buildings constructed with conductive flooring and in the central portion of the BLA.
- Lateral and vertical delineation of Aroclor-1254 in soil at a former transformer location to the west of Building 416 (sample location BLATR02).
- Lateral and vertical delineation of Aroclor-1254 in soil north of Building 405 (sample location BLASS01). All other PCB detections at the site appear to have been delineated to residential RBCs.
- Characterization of potential impacts within underground utility vaults (sediment and surface water) located adjacent to BLA buildings.

4.2.2 Proposed Activities

The following activities are proposed to complete the remedial investigation activities at the BLA:

- A complete inventory of all site buildings to identify the locations and the total footprint of conductive flooring material at the site. This data will be used to evaluate, and develop feasibility level costs for, potential remedial alternatives for the material.
- Identify the extent of metals and asbestos impacts to surface soils (0.5 ft bgs). As lead is known to be a major component of the flooring material, XRF field screening of surface soils will be used to define areas where impacts may be present. Surface soil samples will collected around the perimeter of each building identified with conductive flooring. The samples will be collected at a spacing of 1 ft, 5 ft, and 10 ft from the building footprint on approximately 20-ft centers. The exact sample locations will be selected in the field and will be biased towards preferential flow paths and areas where there are visual signs of impact (i.e., red staining from degraded flooring material). Based on the results of the XRF screening, a subset of samples (approximately 10-percent of field-screened

Radford Army Ammunition Plant, Radford, Virginia

samples) will be selected for laboratory analysis of TAL Metals by USEPA Method 6010, PAHs by USEPA Method 8270 and asbestos by WHAT METHOD. Five samples will also be submitted for TCLP metals analysis. This dynamic field-screening program in combination with laboratory data confirmation should enable a complete delineation of impacts to surface soils from the conductive flooring material. The sampling program will be used to delineate impacts at all of the BLA buildings that contained the conductive flooring.

- ARCADIS will collect a minimum of four surface soil samples (0-0.5 ft bgs) in the
 vicinity of former sample location BLASB02 to delineate the extent of PAH impacts
 in the central portion of the BLA. The samples will be sent to a laboratory and
 analyzed for PAHs by USEPA Method 8270 on a 48-hour turn-around time. If
 PAHs are detected in excess of residential RBCs, additional sampling will be
 conducted to complete the delineation work.
- ARCADIS will collect one subsurface (2-3 ft bgs) soil sample and two surface soil (0-0.5 ft bgs) samples near former sample location BLATR02. These samples are intended to delineate potential PCB impacts associated with a former pole mounted transformer at this location and to assist in determining if a removal action will be necessary. The samples will be sent to a laboratory for analysis of PCBs by USEPA Method 8082.
- ARCADIS will collect two subsurface (soil samples 1-2 ft bgs and 2-3 ft bgs) and two surface soil samples (0-0.5 ft bgs) near former sample location BLASS01.
 These samples are intended to delineate potential PCB impacts at this location and to assist in determining if a removal action will be necessary. The samples will be sent to a laboratory for analysis of PCBs by USEPA Method 8082.
- ARCADIS will survey the BLA to locate underground utility vaults that may have been impacted by historical operations at the site. Where identified, ARCADIS will collect one sediment and one surface water sample from material that have deposited in the vaults. The sediment and surface water samples will be analyzed for TAL metals, PAHs, and VOCs.

A summary of the proposed sampling program for the BLA is presented in Table 4 2; proposed sampling locations are depicted in Figure 4-2.

Radford Army Ammunition Plant, Radford, Virginia

4.3 Igniter Assembly Area

4.3.1 Data Gaps

4.3.1.1 Conductive Flooring

Based on the results of previous investigations at the site, the degraded conductive flooring in the various IAA buildings has been identified as the source of metals and asbestos impacts to surrounding surface soils. A 2002 and 2005 assessment of the conductive flooring material indicated that the degraded flooring contained elevated levels of several TAL metals, asbestos, PAHs, and PCBs. TCLP analyses have also been completed. As such, the conductive flooring material at the IAA has been well characterized. However, similar to the BLA the following information will need to be collected to assist in evaluating remedial alternatives for the conductive flooring material:

 A complete understanding of the number, location, size, and condition of the site buildings that contain the conductive flooring material. In addition to the main IAA buildings, there are several outparcel buildings that contain conductive flooring.

4.3.1.2 Soils and Sediments

Several TAL metals have been detected at elevated levels in soils at the IAA. While some of the metals detections may be attributed to naturally occurring background levels, previous sampling events have confirmed that surface soils adjacent to many site buildings have been impacted by metals leaching from degraded conductive flooring material. The previous investigations have indicated that the impacts are generally confined to surface soil (0 – 0.5 ft bgs) and that the contaminants have fairly low mobility (i.e., concentrations decrease rapidly with depth or distance from the structures). The degraded conductive flooring material that has impacted the soil exhibits a dark red color and based on visual observations of the site, the impacts to surface soil generally appear to be confined to the areas in the immediate vicinity of the buildings. However, previous sampling efforts have not confirmed/delineated the extent of impacts to surface soils across the site. Previous sampling events also have not fully investigated a PCB detection exceeding industrial RBCs and the extent of metals impacts within the sediments of the IAA drainage ditches/culverts. Specific data gaps that should be addressed include:

Radford Army Ammunition Plant, Radford, Virginia

- Lateral delineation of metals and asbestos impacts surrounding buildings constructed with conductive flooring.
- Characterization of potential impacts within underground utility vaults (sediment and surface water) located adjacent to IAA buildings.
- Delineation of PCB impacts to surface soil near Building 8101.
- Delineation of metals impacts to sediments within the drainage ditch located to the northeast of the BLA. Lead was detected at 2002 sediment sample location IASD06 in excess of industrial RBCs.

4.3.2 Proposed Activities

The following activities are proposed to complete the remedial investigation activities at the IAA:

- ARCADIS will perform a complete inventory and survey of all site buildings to identify the location and total footprint of conductive flooring material at the site.
- ARCADIS will survey the IAA to locate underground utility vaults that may have been impacted by historical operations at the site. Where identified, ARCADIS will collect one sediment and one surface water sample from material that has deposited in the vaults. The sediment and surface water samples will be analyzed for TAL metals, PAHs, and VOCs.
- ARCADIS will conduct a sampling program to identify the extent of metals and asbestos impacts to surface soils surrounding buildings with conductive flooring. As lead is known to be a major component of the flooring material, XRF field screening of surface soils will be used to define areas where impacts may be present. Surface soil samples will collected around the perimeter of each building identified with conductive flooring. The samples will be collected at a spacing of 1 ft, 5 ft, and 10 ft from the building footprint on approximately 20-ft centers. The exact sample locations will be selected in the field and will be biased towards preferential flow paths and areas where there are visual signs of impact (i.e., red staining from degraded flooring material). Based on the results of the XRF screening, a subset of samples (approximately 10-percent of field-screened samples) will be selected for laboratory analysis of TAL Metals and asbestos. Five samples will also be submitted for TCLP analysis (metals). This dynamic field-

Radford Army Ammunition Plant, Radford, Virginia

screening program in combination with laboratory data confirmation should enable a complete delineation of impacts to surface soils from the conductive flooring material.

- ARCADIS will conduct a sampling program to delineate the extent of lead impacts to the main IAA drainage ditches. In particular, the drainage ditches where sediment samples IASD06 and IASD12 were collected in 2002. ARCADIS will use XRF to field screen sediments at 20 ft spacing downgradient of IASD06 and IASD12. ARCADIS will continue to collect samples for field screening at 20-ft spacing until the XRF field screening indicates lead concentrations below 150 mg/kg. A minimum of 2 samples will also be submitted from each ditch for laboratory analysis of lead by USEPA Method 6010.
- ARCADIS will collect one subsurface (2-3 ft bgs) soil sample and two surface soil (0-0.5 ft bgs) samples near former sample location IASS05. These samples are intended to delineate potential PCB and PAH impacts near Building 8101, and to assist in determining if a removal action will be required for the impacted soil. The samples will be sent to a laboratory for analysis of PCBs by USEPA Method 8082 and PAHs by USEPA Method 8270.

A summary of the proposed sampling program for the IAA is presented in Table 4 3; proposed sample locations are depicted in Figure 4-3.

4.4 Northern Burning Ground (NBG)

Data collected during previous phases of investigation at the NBG have indicated that the site has been well characterized and the extent of contamination delineated. This work was performed through the collection of 90 surface and subsurface soil samples for laboratory analysis and 291 surface samples for field screening using XRF. As such, additional investigation at the NBG is not required and will not be included during this phase of investigation. Adequate data exist to move forward with remedy selection at this site.

4.5 Rail Yard (RY)

Based on the findings of previous investigations conducted at the RY, the site has been well characterized and there is minimal risk to human health or the environment. The limited number of organic constituents detected in soil have been delineated to concentrations below industrial RBCs. While several metals were detected in excess

Radford Army Ammunition Plant, Radford, Virginia

of residential soil screening levels (arsenic and iron were also detected at concentrations exceeding industrial RBCs), no metals were detected at concentrations exceeding the both the background UTLs and residential RBCs. As such, additional investigation at the RY is not required and will not be performed during this phase of activity at the site. Adequate data exists to move forward with the remedy selection at this site, which is anticipated to be No Further Action.

4.6 Western Burning Ground (WBG)

4.6.1 Data Gaps

The majority of the remedial investigation work at the WBG has been completed during previous phases of investigation, including evaluation of impacts to surface soil, subsurface soil, pond sediments, surface water, and ecological receptors (i.e. fish tissues). The following sections provide further details on remaining data gaps at the WBG.

4.6.1.1 Soils

TAL metals have been detected in excess of industrial RBCs in soils at the WBG. While some of the metals detections may be related to naturally occurring background levels, previous sampling events have identified lead impacts in excess of industrial RBCs to subsurface soils below the dirt access road west of the former burning area. These identified lead impacts below the access road are generally confined to a layer of ashy material identified between 2 and 4.5 ft bgs. Soil impacted with lead was previously removed from the burning area. Lead has not been detected above the residential RBC in soil from other areas of the WBG. Therefore, no data gaps for lead impacts in soil are currently apparent.

PAH detections exceeding industrial RBCs were limited to one surface soil sample collected from an area in the northwestern portion of the burning area (WBGSB24A) and two surface soil samples collected from the unlined drainage ditch northwest of the burn area (WBGSB25 and WBGSB27). Two other surface soil samples collected from the drainage ditch and one subsurface soil sample collected from the access road contained PAH concentrations above residential RBCs, but below industrial RBCs. Otherwise at the WBG, soil samples did not contain PAHs above residential RBCs. Therefore, PAH impacts appear to be limited in extent and well defined by the existing sampling array. No current data gaps for PAH impacts are apparent at the WBG.

Radford Army Ammunition Plant, Radford, Virginia

4.6.1.2 Sediments

TAL metals have been detected above residential and industrial RBCs in sediments collected from the unnamed pond at the WBG; however, only lead has been detected above naturally occurring background sediment concentrations. Based on previous sampling, lead impacts to pond sediments appear to be limited to an approximately 2,000 sq ft area in the northeastern edge of the pond near the burning area.

PAH concentrations exceeding industrial RBCs were detected in one sediment sample collected from the downgradient unnamed stream near the railroad tracks. Specifically, the remaining data gaps that exist include:

- Refining the lateral and vertical extent of lead impacts in the northeastern portion of the unnamed pond.
- Verification of previous PAH concentrations detected within sediment in the unnamed creek into which the WBG pond discharges.

4.6.1.3 Surface Water

Previous sampling of surface water at the WBG has detected TAL metals, herbicides, pesticides, and VOCs below the Virginia Water Quality Standards for chronic effects in freshwater standards. Metals concentrations were within naturally occurring background levels, and herbicide and pesticide detections do not appear related to operations at the WBG. Therefore, no data gaps have been identified for surface water at the WBG.

4.6.2 Proposed Activities

The following activities are proposed to complete the remedial investigation activities at the WBG:

- ARCADIS will probe the pond to determine the overall depth of the bottom sediments. These activities will be focused on the northeastern portion of the pond where there are known lead impacts within the sediment.
- ARCADIS will collect additional sediment samples within the northeast portion of the pond with known lead impacts for the purpose of vertical delineation. The vertical profiling will be performed at four separate locations within the impacted

Radford Army Ammunition Plant, Radford, Virginia

area. The samples will be collected at one foot depth intervals and will extend from top of sediment to pond bottom. All samples will be field screened for lead using XRF and submitted for laboratory analysis of lead. Approximate locations of the proposed samples are presented in Figure 4-4.

- ARCADIS will collect surface water samples from the pond at each of the four sediment sample locations discussed above to evaluate potential impacts from the underlying sediment. The samples will be submitted for laboratory analysis of lead by USEPA Method 6010.
- Sediment and surface water samples will be collected from two locations in the unnamed creek downgradient of the WBG pond for analysis of PAHs. One proposed sediment/surface water sample location corresponds with the historic sampling location (WBGSD09/WBGSW09) and is intended to verify PAH concentrations observed in the previous sediment sample. The second sediment/surface water samples will correspond with the historic sampling location (WBGSD08/WBGSW08) and is intended to verify the absence of PAH concentrations observed in the previous sediment sample. If these data sets confirm historical results that concentrations are higher in the downgradient samples, this may demonstrate that the constituents are related to the railroad tracks downgradient of the WBG rather than from historical operations at the WBG. Approximate locations of the proposed samples are presented in Figure 4-4.

A summary of the proposed sampling program for the WBG is presented in Table 4 4.

4.7 Groundwater Monitoring

4.7.1 Data Gaps

For the purposes of this Work Plan, potential impacts to groundwater at the RFAAP-NRU will be investigated as a facility wide issue rather than specific to any of the individual AOCs. The results of the 2007 groundwater investigation at the RFAAP-NRU indicated the presence of several TAL metals in groundwater at concentrations exceeding the Federal Drinking Water MCLs. No other constituents were detected at concentrations exceeding the applicable MCLs. Based on the presence of naturally occurring metals within the formation at the RFAAP-NRU, it is likely that the detections can be attributed to background. However, background groundwater data has not been collected at the RFAAP-NRU. Of the 11 total monitoring wells installed at the RFAAP-NRU, three are located at the WBG, two are at the NBG, four are in the vicinity

Radford Army Ammunition Plant, Radford, Virginia

of the IAA and two are at the BLA. No wells have been installed at the BDDT. Therefore, this phase of investigation at the RFAAP-NRU will include:

- The collection of background groundwater quality data for the RFAAP-NRU utilizing spring water samples.
- The collection of groundwater data at the BDDT to evaluate potential impacts from historic operations at the site.
- Low-flow sampling of the wells included during the 2007 groundwater investigation to verify the presence of metals at concentrations exceeding Federal MCLs.

4.7.2 Proposed Field Investigation

The following activities will be conducted to complete the groundwater investigation program at the RFAAP-NRU:

- One monitoring well will be installed at the BDDT in conformance with the guidance presented in the Master Work Plan (URS, 2003) and ARCADIS QAPA (2008b). As with other monitoring wells at the RFAAP-NRU, this monitoring well will be installed in the shallow bedrock zone where groundwater is typically first encountered. This new monitoring well will be installed immediately downgradient of the BDDT near the unnamed stream. This location was selected so that the well may serve a dual purpose. First, the well will enable ARCADIS to evaluate potential impacts to groundwater from the BDDT. Secondly, this well will be located next to the unnamed stream that appears to be the main groundwater discharge point for the western portion of the RFAAP-NRU; therefore, this point may enable ARCADIS to evaluate any gross impacts to groundwater quality at the RFAAP-NRU. The location of the proposed monitoring well is depicted on Figure 4-1.
- All twelve RFAAP-NRU monitoring wells, including the new well at the BDDT, will
 be sampled for TAL metals to confirm the metals detections from the 2007
 sampling event. The groundwater sampling activities will be conducted using lowflow techniques to minimize interference from suspended solids and to provide an
 accurate representation of groundwater quality.
- In addition to TAL metals, the new BDDT monitoring well will be sampled for PAHs.

Radford Army Ammunition Plant, Radford, Virginia

- ARCADIS will review surface water maps and conduct field reconnaissance activities to identify any natural springs within the western portion of the RFAAP-NRU. Springs are known to exist at the headwaters of the unnamed ponds at the WBG and RY.
- Samples will be collected from all identified springs and analyzed for TAL metals.
 The spring samples should provide an excellent indicator of background
 groundwater quality and natural metals concentrations at the RFAAP-NRU as
 springs tend to be representative of overall groundwater conditions (more so than
 individual monitoring well locations).

A summary of the proposed groundwater sampling program is presented in Table 45.

Radford Army Ammunition Plant, Radford, Virginia

5. Field Investigation

5.1 Sampling Procedures

All sampling activities proposed within this RI Work Plan will be conducted in accordance with the procedures outlined in the approved Master Work Plan (URS 2003), SOPs, and ARCADIS' project specific Health and Safety Plan (HASP).

5.2 Preliminary Site Inspection and Utility Mark-Out

Prior to any subsurface investigation, ARCADIS will complete a preliminary site inspection and utility mark-out. Field personnel will perform the following activities:

- Consult with installation personnel about the location of above and below ground utilities, tanks, foundations, or process lines that may be drilling hazards.
- Obtain, if feasible, installation utility maps.
- Evaluate potential subsurface investigation locations with respect to access and potential hazards.
- If appropriate, supervise a professional utility locator for the mark-out of the anticipated investigation locations.
- Obtain any necessary site-specific work permits.

5.3 Surveying

Horizontal coordinates and ground surface elevations for soil, sediment, and spring water sample locations during this phase of investigation will be obtained using a global positioning system (GPS) unit. Horizontal coordinates and vertical elevations of any new monitoring well will be surveyed by a Virginia licensed surveyor experienced in working at the RFAAP. Horizontal coordinates (northing and easting) will be surveyed using the North American Datum (NAD) of 1983. At each monitoring well location, the ground surface elevation and elevation of the top of the inner well casing used for measuring water levels will be surveyed to the nearest 0.01 ft.

Radford Army Ammunition Plant, Radford, Virginia

5.4 Investigation Derived Materials

Investigation derived materials (IDM) generated during the proposed activities will be managed in accordance with SOP 70.1 in the Master Work Plan (URS, 2003). Investigation derived materials include soil cuttings, purge water, decontamination water, and disposable supplies that have contacted impacted media. All drummed IDM generated at the RFAAP-NRU will be temporarily staged in the designated drum staging area located at the front gate to the facility pending off-site disposal. All IDW will be removed from the RFAAP-NRU within a period not to exceed 45-days of generation.

Radford Army Ammunition Plant, Radford, Virginia

6. Quality Control

Quality control/quality assurance (QA/QC) for this investigation will be handled in accordance with the Master QAPP (URS, 2003) as amended by ARCADIS' QAPA, included within this work plan as Appendix A. The ARCADIS QAPA describes sample management, analytical procedures (including reporting limits and laboratory control limits), quality control checks, and data validation.

6.1 Data Quality Objectives for Measurement Data

Data Quality Objectives (DQOs) for the investigation activities discussed in this Work Plan have been designed to characterize the nature and extent of contamination at the RFAAP-NRU. Additional analyses have been included that will provide for data of particular use to the various AOCs at RFAAP-NRU. In addition to the qualitative DQOs, the analyses conducted will also conform to the project DQOs pertaining to field sampling methodology and laboratory-specific DQOs referenced in the Master QAPP.

6.2 Measurement/Data Acquisition

Field, laboratory, and data handling procedures relating to activities performed at RFAAP-NRU will conform to the specific requirements detailed in the Master Work Plan (MWP) or in the SOPs as identified below.

Subject	MWP Section	SOP(s)
Sample management	5.1	50.1, 50.2, 50.3
Documentation	4.3	10.1, 10.2, 10.3, 10.4
XRF Screening	-	30.11
Sediment Sampling	5.4	30.4, 30.5, 30.7, 30.12
Well Drilling/Installation	5.2	20.1, 20.2, 20.11

Radford Army Ammunition Plant, Radford, Virginia

Boring Logs / Stratigraphic Characterization	5.2.5	10.3
Soil Sampling	5.2.8	30.1, 30.7, 30.9
Groundwater Sampling	5.2.10.3	20.12, 30.2
Decontamination Requirements	5.12	80.1
Investigation Derived Materials	5.13	70.1

In accordance with the project requirements, duplicate samples, will be collected at a rate of one sample per 20 for each sample matrix (minimum of one sample per AOC), equipment blanks will be collected at a rate of 1 per 20 per medium where dedicated equipment is not used (minimum of one sample per AOC), trip blanks will accompany every cooler containing aqueous VOC samples, and temperature blanks will be provided in every shipping container requiring controlled temperatures.

6.3 Assessment/Oversight

Assessment and oversight activities for this site will be conducted in accordance with the ARCADIS QAPA.

6.4 Data Validation and Usability

Level III data validation for samples collected and analyzed from RFAAP-NRU will be conducted in accordance with Section 9.5 of the Master Work Plan (URS, 2003) and the ARCADIS QAPA in Appendix A.

Radford Army Ammunition Plant, Radford, Virginia

7. Schedule and Reporting

ARCADIS anticipates conducting the field investigation activities discussed in this report in August/September 2008. The results of the field investigations proposed within this Work Plan will be incorporated into the site conceptual model and presented within an RI Report for the NRU (RAAP-044). The RI Report will include a comprehensive Human Health Risk Assessment (HHRA) and Screening Level Ecological Risk Assessment (SLERA) based on the complete body of data collected throughout the multiple phases of investigation at the site. The RI Report will serve as the basis for developing future corrective action strategies for the site and detail the remaining steps to achieve closure for the various areas of concern under the CERCLA process.

Radford Army Ammunition Plant, Radford, Virginia

8. References

- ARCADIS, 2008a. DRAFT Health and Safety Plan Addendum, Radford Army Ammunition Plant, Radford, Virginia, April.
- ARCADIS, 2008b. DRAFT Quality Assurance Plan Addendum, Radford Army Ammunition Plant, Radford, Virginia, April.
- IT Corporation (IT), 2001. Facility-Wide Background Study Report. Radford Army Ammunition Plant, Virginia. Final Report. December 2001. Delivery Order No. 0013, Contract No. DACA31-94-D-0064.
- Shaw, 2003. Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG, Radford Army Ammunition Plant, Radford, Virginia. September.
- Shaw, 2004a. NRU Additional Characterization Sampling: Work Instructions, Radford Army Ammunition Plant, Radford, Virginia. May.
- Shaw, 2004b, Draft New River Unit Investigation Report: Rail Yard Remedial Investigation, Radford Army Ammunition Plant, Radford, Virginia. October.
- Shaw, 2005. Draft Field Sampling Plan for Asbestos Sampling at the BLA and IAA, Radford Army Ammunition Plant, Radford, Virginia. February.
- Shaw, 2007. NRU Additional Characterization Sampling & Groundwater Investigation Data Report, Radford Army Ammunition Plant, Radford, Virginia. October.
- URS, 2003. Master Work Plan, Radford Army Ammunition Plant, Radford, Virginia. August.
- U.S. Environmental Protection Agency (USEPA), 1994. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OSWER Directive 9355.4-12. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. July 14.
- U.S. Environmental Protection Agency (USEPA), 1999. Technical Review Workgroup for Lead Guidance Document. Rev 0. April.

Radford Army Ammunition Plant, Radford, Virginia

- U.S. Environmental Protection Agency (USEPA), 2003. Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening. EPA/903/R-93-001.
- U.S. Environmental Protection Agency (USEPA). 2006. 2006 Edition of the Drinking Water Standards and Health Advisories, EPA822-R-06-013. August.
- U.S. Environmental Protection Agency (USEPA), 2007. Region 3 Risk-Based Concentration Table. October.
- Virginia Department of Environmental Quality (VDEQ), 2007. Virginia Water Quality Standards, 9VAC25-260. Effective September 11, 2007.

Tables

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

	New River Unit, Radford Army Ammunition Plant, Radford, Virginia																					
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSS1	DTSS2	DTSS3	DTSB1	DTSB2	DTSB3	DTSB4	DTSB5	DTSB6	DTSB7	DTSB8	DTSB9	DTSB10	DTSB11	DTSB12	DTSB13	DTSB14	DTSB15
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0.5 - 1	2.5 - 3	2.5 - 3	2.5 - 3	0.5 - 1	1 - 1.5	2 - 2.5	1 - 1.5	3 - 3.5	3.5 - 4	3.5 - 4	3.5 - 4	0.5 - 1	3.5 - 4	2 - 2.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/11/98	08/11/98	08/11/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/13/98
Explosives		(**************************************	(
None Detected										[]												
Herbicides										[]												
					NIA	l NIA	NIA.	NIA	NIA	l NA	NIA	NIA.	NIA I	NIA	NIA I	NIA	NIA.	NIA	NIA	NIA.	NIA.	NIA.
2,4-D	mg/kg				NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dalapon Dicamba	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MCPP	mg/kg				NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Organochlorine Pesticides	mg/kg				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
					NIA	NIA.	NIA	NIA	NIA	NIA I	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
4,4'-DDD	mg/kg				NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	mg/kg				NA	NA	NA	NA	NA	INA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs		04 (N)	440 (N)		NIA	NIA.	NIA.	NIA	NIA	I NIA I	NIA	NIA.	NIA .	NIA	NIA .	NIA	NIA.	NIA	NIA	NIA	N.I.A	NIA.
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA	NA NA	NA NA	NA 0.00	NA 0.00	NA	NA 0.00	NA 0.00	NA 0.00	NA 0.00	NA 0.40	NA 0.40	NA 0.44	NA 0.40	NA 0.00	NA 0.44	NA 0.00	NA
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA	NA NA	NA	<0.02	<0.02	<0.02 [<0.02]	<0.02	<0.02	<0.02	<0.02	<0.42	<0.43	<0.41	<0.43	<0.02	<0.41	<0.02	<0.02
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	<0.04	<0.04 <0.0022	<0.04 [<0.04] <0.0021 [0.0018 J]	<0.04	<0.04 <0.002	<0.04 <0.002	<0.04 <0.002	<0.84 0.33	<0.85 0.54	<0.82 0.25	<0.86 0.02 J	<0.04 0.0008 J	<0.82 0.09	<0.04 0.02	<0.04 0.0056
Anthracene	mg/kg	2,300 {N} 0.22 {C}	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	0.0087 0.02	<0.0022	<0.0021 [0.0018 J] <0.0021 [0.0028]	<0.002	<0.002	<0.002	<0.002	0.33	0.54 0.88		0.02 J 0.02 J		0.09 0.27	0.02	0.0056
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	0.39 (C)		NA NA	NA NA	NA NA	0.02 0.03	<0.0022	<0.0021 [0.0028]	0.002	<0.002	<0.002	0.002	0.83	0.85	0.34 0.41	0.02 J 0.02 J	0.0011 J 0.0021	0.27	0.04	0.0077
Benzo(b)fluoranthene	mg/kg	0.022 {C} 0.22 {C}	3.9 (C)		NA NA	NA NA	NA NA	0.04	<0.0022	<0.0021 [0.0039]	< 0.003	<0.002	<0.002	0.002 0.0007 J	0.83	1.2	0.44	0.02 J 0.04 J	0.0021	0.25	0.06	0.0071
Benzo(g,h,i)perylene	mg/kg	0.22 (0)	3.9 (C) 		NA NA	NA NA	NA NA	0.0098 J	<0.0044	<0.0041 [<0.0043]	<0.004	<0.004	<0.004	<0.004	0.29 J	0.56 J	0.14 J	<0.08	0.0043 0.0017 J	0.09 J	0.00 J	0.0009 0.0025 J
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		NA	NA NA	NA NA	0.0036 3	<0.0044	<0.0021 [0.0022]	<0.004	<0.004	<0.004	0.0012 J	0.29 3	0.43	0.14 3	0.02 J	0.0017 J	0.09 3	0.033	0.0023 3
Chrysene	mg/kg	22 (C)	390 (C)		NA	NA NA	NA	0.02	<0.0022	<0.0021 [<0.0022]	<0.002	<0.002	<0.002	0.0012 J	0.87	1	0.42	0.02 3	0.003	0.13	0.02	0.000
Dibenzo(a,h)anthracene	mg/kg				NA	NA NA	NA	0.0018 J	<0.0044 J	<0.0041 J [<0.004 J]	<0.004 J	<0.004 J	<0.004 J	<0.004 J	0.08 J	<0.08 J	<0.08 J	<0.08 J	<0.0041 J	<0.08 J	0.0035 J	<0.0041 J
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	NA NA	NA NA	0.07	0.0025 J	<0.0041 [0.0097]	0.0018 J	<0.004	<0.004	0.0016 J	2.6	3.2	1.2	0.12	0.0056	0.86	0.16	0.02
Fluorene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	< 0.0043	<0.0044	<0.0041 [<0.004]	<0.004	< 0.004	<0.004	<0.004	0.11	0.19	0.05 J	<0.08	<0.0041	<0.08	0.01	0.0026 J
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	0.02	<0.0022	<0.0021 [0.003]	<0.002	<0.002	<0.002	0.0008 J	0.43	0.57	0.24	0.02 J	0.0021	0.2	0.03	0.0055
Naphthalene	mg/kg				NA	NA	NA	<0.02	<0.02	<0.02 [<0.02]	<0.02	< 0.02	<0.02	<0.02	<0.42	< 0.43	<0.41	< 0.43	<0.02	<0.41	<0.02	< 0.02
Phenanthrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	0.04	<0.0022	<0.0021 [0.0068]	< 0.002	< 0.002	<0.002	< 0.002	1.8	2.5	1.1	0.13	0.0028	0.37	0.13	0.02
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	0.07	0.0026	0.005 [0.01]	< 0.002	< 0.002	<0.002	0.0016 J	1.9	2.4	0.94	0.12	0.0053	0.69	0.12	0.02
PCBs						•															•	•
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volatile Organics																						
1,2,3-Trichloropropane	mg/kg				< 0.0030	<0.0030 J	R	< 0.0040	< 0.0030	R [<0.0030 J]	< 0.0030	< 0.0030	< 0.0030	R	R	R	<0.0030 J	R	<0.0030 J	<0.0030 J	<0.0030 J	< 0.0030
1,2,4-Trimethylbenzene	mg/kg				0.0040	<0.0020 J	0.0030 J	<0.0020	<0.0020	R [<0.0020 J]	<0.0020	<0.0020	<0.0020	R	R	R	<0.0020 J	R	<0.0020 J	<0.0020 J	<0.0020 J	<0.0020
m,p-Xylene	mg/kg				0.0030	<0.0030 J	R	<0.0030	<0.0030	<0.0030 [<0.0030 J]	<0.0030	< 0.0030	<0.0030	R	R	R	<0.0030 J	R	<0.0030 J	<0.0030 J	<0.0030 J	< 0.0030
Methylene Chloride	mg/kg	85 {C}	380 (C)		<0.0010	<0.0010 J	R	< 0.0010	<0.0010	<0.0010 [<0.0010 J]	<0.0010	0.0040	0.0030	R	R	R	<0.0010 J	R	0.0030 J	0.0050 J	<0.0010 J	0.15
Semivolatile Organics																						
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		< 0.42	<0.43	<0.40	<0.46	< 0.39	<0.38 [<0.38]	<0.39	<0.41	<0.41	<0.41	0.060 J	0.090 J	<0.42	< 0.43	<0.42	< 0.43	<0.42	<0.42
3,3'-Dichlorobenzidine	mg/kg		1		<0.82	<0.86	<0.79	<0.90	<0.76	<0.76 [<0.76]	<0.77	<0.81	<0.80	<0.80	<0.83	0.12 J	<0.82	<0.83	<0.82	<0.83	<0.81	<0.82
4-Methylphenol	mg/kg				<0.42	<0.43	<0.40	<0.46	<0.39	<0.38 [<0.38]	<0.39	<0.41	<0.41	<0.41	<0.43	<0.43	<0.42	<0.43	<0.42	<0.43	<0.42	<0.42
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.56	0.61	0.060	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		<0.42	<0.43	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		0.61	0.86	0.14 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		2.9	1.8	0.27 J	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		2.1	2.0	0.31 J	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		6.2 J	3.0 J	0.51 J	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg				0.84 J	0.75 J	0.14 J	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		2.7	1.2	0.39 J	NA -0.46	-0.20	NA 20 L.0 201	NA	NA -0.44	NA -0.41	NA -0.41	NA 0.57.1	NA 0.45 L	NA -0.42	NA 0.11 I	NA -0.42	NA -0.42	NA -0.42	NA 0.070 I
Carbazole	mg/kg		390 (C)		1.9 J 3.9	1.4 J	0.17 J	<0.46	<0.39 NA	<0.38 [<0.38] NA	<0.39	<0.41	<0.41	<0.41 NA	0.57 J	0.45 J	<0.42	0.11 J	<0.42	<0.43 NA	<0.42	0.070 J
Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg	22 {C}	390 (C) 		0.40 J	2.1 0.38 J	0.43 0.040 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzo(a,n)anthracene Dibenzofuran	mg/kg				0.40 J 0.28 J	0.36 J 0.29 J	<0.40	<0.46	<0.39	<0.38 [<0.38]	<0.39	<0.41	<0.41	<0.41	0.23 J	1.1	<0.42	<0.43	<0.42	<0.43	<0.42	<0.42
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		<0.42	<0.43	<0.40	<0.46	<0.39	<0.38 [<0.38]	<0.39	<0.41	<0.41	0.070 J	0.23 J 0.050 J	0.17 J	0.090 J	0.12 J	0.060 J	0.21 J	0.11 J	<0.42
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		<0.42	<0.43	<0.40	0.12 B	<0.39	<0.38 [<0.38]	<0.39	<0.41	<0.41	<0.41	< 0.43	<0.43	<0.42	<0.43	<0.42	<0.43	<0.42	<0.42
Fluoranthene	mg/kg	310 {N}	4,100 {N}		6.8	4.8	0.87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	mg/kg	310 (N)	4,100 (N) 4,100 (N)		0.54	0.56	0.050 J	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
remotene	9/109	0.22 {C}	3.9 {C}		0.82 J	0.77 J	0.030 J	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Fluorene Indeno(1, 2, 3-cd)pyrene	ma/ka						0.170	14/1	. 47 1	1 '*/'	1 1/1	14/1								1473	1 4/ 1	
Indeno(1,2,3-cd)pyrene	mg/kg mg/ka	0.22 (0)					< 0.40	NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	I NA
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg	` `			0.12 J	0.12 J	<0.40 <2.0	NA <2.3	NA <1.9	NA <1.9 [<1.9]	NA <2.0	NA <2.1	NA <2.0	NA <2.1	NA <2.2	NA <2.2	NA <2.1	NA <2.2	NA <2.1	NA <2.2	NA <2.1	NA <2.1
Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	` '					<0.40 <2.0 0.68	NA <2.3 NA	NA <1.9 NA	NA <1.9 [<1.9] NA	NA <2.0 NA	NA <2.1 NA	NA <2.0 NA	NA <2.1 NA	NA <2.2 NA	NA <2.2 NA	NA <2.1 NA	NA <2.2 NA	NA <2.1 NA	NA <2.2 NA	NA <2.1 NA	<2.1 NA
Indeno(1,2,3-cd)pyrene Naphthalene Pentachlorophenol	mg/kg	5.3 {C}	24 {C}		0.12 J <2.1	0.12 J <2.2	<2.0	<2.3	<1.9	<1.9 [<1.9]	<2.0	<2.1	<2.0	<2.1	<2.2	<2.2	<2.1	<2.2	<2.1	<2.2	<2.1	<2.1

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-1 through 3-3.BDDT Tables-reformatted

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Adjusted Adjusted Facility-Wide DTSS1 DTSS2 DTSS3 DTSB1 DTSB2 DTSB3 DTSB4 DTSB5 DTSB6 DTSB7 DTSB8 DTSB9 DTSB10 DTSB12 DTSB13 DTSB14 DTSB14 DTSB15																						
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSS1	DTSS2	DTSS3	DTSB1	DTSB2	DTSB3	DTSB4	DTSB5	DTSB6	DTSB7	DTSB8	DTSB9	DTSB10	DTSB11	DTSB12	DTSB13	DTSB14	DTSB15
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0.5 - 1	2.5 - 3	2.5 - 3	2.5 - 3	0.5 - 1	1 - 1.5	2 - 2.5	1 - 1.5	3 - 3.5	3.5 - 4	3.5 - 4	3.5 - 4	0.5 - 1	3.5 - 4	2 - 2.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/11/98	08/11/98	08/11/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/12/98	08/13/98
Inorganics																						
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	15,000	15,800	20,100	11,600	11,800	11,200 [10,900]	12,900	11,000	16,000	10,700	9,990	11,100	10,100	7,770	11,800	10,100	12,600	10,600
Antimony	mg/kg	3.13 {N}	40.88 {N}		< 0.610	< 0.660	<0.590	< 0.670	< 0.570	4.80 K [<0.560]	<0.580	< 0.620	<0.610	1.50 B	1.80 B	1.70 B	1.90 B	2.10 B	2.00 B	2.00 B	2.10 B	4.80 J
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	4.30	7.90	11.6	4.80	4.50	7.00 [3.90]	6.10	6.10	6.10	7.30	6.30	7.30	6.50	6.40	7.20	7.10	7.00	4.40
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	72.0 K	63.0 K	73.5 K	53.3 K	54.9 K	48.9 K [39.2 K]	47.3 K	32.4 K	41.7 K	46.2 B	65.7 K	44.6 B	43.2 K	41.3 B	42.4 B	48.7 B	61.9 B	47.9 L
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.10	0.760	1.50	0.900	0.720	0.570 B [0.460 B]	0.660	0.610 B	0.590 B	0.590 B	1.10 B	0.670 B	0.560 B	0.720 B	0.670 B	0.970 B	1.10 B	0.710 B
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.120	<0.130	<0.120	<0.130	<0.110	<0.110 [<0.110]	<0.120	<0.120	<0.120	<0.240	<0.250	<0.260	< 0.250	< 0.260	<0.240	<0.260	<0.240	<0.120
Calcium	mg/kg				1,440 B	1,890 B	2,560 B	4,600 B	773 B	734 B [630 B]	729 B	662 B	908 B	786 B	874 B	966 B	901 B	769 B	961 B	1,060 B	638 B	934 B
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	37.0	33.4	60.8	30.1	37.6	27.2 [22.3]	31.4	33.9	32.3	28.3	40.5	33.8	25.1	35.0	37.5	27.8	29.4	40.0
Cobalt	mg/kg			72.3	29.8	446	40.8 L	14.5	19.0	11.3 [9.20]	18.1	15.6	17.6	15.3	26.3	17.2	13.7	13.8	8.40 J	15.4	19.1	12.9 L
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	33.9 L	138 L	40.8	17.2 B	31.1 L	68.0 L [20.0 L]	21.3 L	10.4 B	35.3 L	40.5 L	20.0 B	113 L	11.6 B	37.4 L	21.6 B	108 L	6.20 B	25.9 K
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	37,200	32,700	58,100	29,100	32,000	29,000 [21,400]	30,500	30,800	32,100	28,600	32,100	29,700	23,500	29,400	32,500	28,600	36,900	29,100
Lead	mg/kg	400	750	26.8	157	336	82.5	22.6	15.1	12.5 [9.00]	13.2	13.5	13.2	14.0	19.9	12.1	12.4	19.5	11.1	18.4	20.0	16.1
Magnesium	mg/kg				12,800	6,700	13,500	6,850	4,930	2,700 [2,450 B]	3,290	3,950	3,120	3,000 B	3,610	4,040 B	2,550	2,930 B	4,330 B	2,830 B	4,430 B	3,360
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	1,580	3,430	2,030	408	812	515 [405]	790	543	587	815	1,660	536	847	612	303	620	1,040	712
Mercury	mg/kg	2.35	30.66	0.13	<0.130	<0.130	<0.120	<0.140	<0.120	<0.120 [<0.120]	<0.120	<0.130	<0.120	<0.120	<0.130	<0.130	<0.130	<0.130	<0.130	<0.130	<0.130	<0.130
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	19.4 K	41.3 K	20.1 K	38.4 K	10.3 K	8.40 K [7.30 K]	9.40 K	9.50 K	11.3 K	7.90 K	9.80 K	11.2 K	7.70 K	7.40 K	10.0 K	11.6 K	10.5 K	9.00 K
Potassium	mg/kg				2,280 J	1,670 J	3,980 J	1,070 J	843 J	917 J [832 J]	1,180 J	1,210 J	1,440 J	721 B	593 B	711 B	654 J	611 B	974 B	766 B	859 B	917 K
Selenium	mg/kg	39.1 {N}	511 {N}		<0.610 J	<0.660 J	<0.590 J	<0.670 J	<0.570 J	<0.560 J [<0.560 J]	<0.580 J	<0.620 J	<0.610 J	<1.20 J	<1.20 J	<1.30 J	<1.30 J	<1.30 J	<1.20 J	<1.30 J	<1.20 J	<0.620 L
Sodium	mg/kg				126 B	119 B	119 B	120 B	106 B	95.2 B [162 B]	96.2 B	107 B	103 B	47.2 B	57.7 B	68.3 B	42.7 B	45.6 B	42.3 B	27.4 B	25.4 B	86.2 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.240 L	<0.260 L	<0.240 L	<0.270 J	<0.230 L	<0.220 L [<0.230 L]	<0.230 L	<0.250 L	<0.240 L	2.00 B	0.990 B	<0.520 L	0.890 B	<0.510 L	0.630 B	0.810 B	<0.490 L	<0.250 L
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	60.9 J	64.1 J	108 J	45.3 J	52.3 J	44.6 J [36.0 J]	55.8 J	50.7 J	56.3 J	47.2 J	52.4 J	50.1 J	38.3 J	48.7 J	52.8 J	47.6 J	53.2 J	52.4 K
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 (N)	178	137 B	109 B	271 L	34.9 B	35.0 B [25.1 B]	22.8 B	20.5 B	31.7 B	28.0 B	38.7 B	26.3 B	31.4 B	34.0 B	22.3 B	50.7 B	22.6 B	36.1 B
Miscellaneous																						
Percent Solids	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

Table 3-1 Historical Soil Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								New River C	nit, Radford A	army Ammunit	ion Plant, Ra	atora, virginia	a								
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB16	DTSB17	DTSB18	DTSB19	DTSB20	DTSB21	DTSB22	DTSB23	DTSB35	DTSB36	DTSB37	DTSB38	DTSB39	DTSB40	DTSB41	DTSB42	DTSB43
Sample Depth (ft):		Soil RBC	Soil RBC	Background	2 - 2.5	3 - 3.5	2 - 2.5	2 - 2.5	2 - 2.5	2 - 2.5	2 - 2.5	2 - 2.5	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1
Date Collected:	Units	(Residential)	(Industrial)	Point	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98
Explosives		((
None Detected						[]															
Herbicides						[]															
2,4-D	ma/ka				NIA	NA	NA	NIA.	NΙΛ	NA	NA	NIA I	NIA	NIA	NIA	NIA	NIA	I NIA	I NIA	NIA.	NA
Dalapon	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dicamba	mg/kg				NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MCPP	mg/kg				NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Organochlorine Pesticides	mg/kg				14/1	14/1	14/ (1471	1471	14/1	14/1	14/1	14/ (14/1	14/1	1471	1471	1471	1471	14/1	147.
4,4'-DDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PAHs	mg/kg				IVA	INA	INA	INA	INA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	INA
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA I	NA	NA	NA	NA	NA	l NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		4 J	1.6 J [5.3 J]	<0.21	<0.02	<0.11	<0.6	0.46 J	<0.02	0.4 J	<0.02	<0.02	<0.02	<0.02	<0.11	<0.02	0.26 J	0.38 J
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<17	<8.8 [<42]	<0.21	<0.02	<0.11	<1.2	<1.6	<0.02	< 0.85	<0.02	<0.02	<0.02	<0.02	<0.11	<0.02	<0.83	<1.2
Anthracene	mg/kg	2,300 {N}	31,000 {N}		11	4.9 [23.1]	0.06	0.0046	0.08	0.92	1.3	<0.0021	0.71	<0.04	0.0008 J	<0.0022	<0.0021	<0.21	0.0044	0.64	1.3
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		19.58	6.6 [27.8]	0.00	0.0040	0.08	1.5	2	0.0021 0.0007 J	1.7	<0.002	0.0006 J	0.00022 0.0009 J	0.0021 0.0011 J	0.13	0.0044	1.4	1.9
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		21.88	7.4 [28.3]	1.6	0.0024	0.18	1.7	2.1	<0.0021	1.8 J	<0.002	0.0000 J	0.0009 J 0.0021 J	0.00113 0.0024 J	0.15 J	0.000 0.01 J	1.7 J	1.9 J
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 (C)		27	8.4 [34.9]	0.18	0.0049	0.26	2.1	2.8	<0.0042	2.3	<0.002	0.0021 J	0.0021 J	0.0024 J	0.37	0.01	2.3	2.5
Benzo(g,h,i)perylene	mg/kg				10.1 J	3.2 J [10.9 J]	<0.04	0.0024 J	0.11 J	0.88 J	1.1 J	<0.0042	0.8 J	<0.004	0.0006 J	0.001 J	<0.0041	0.17 J	0.0049 J	0.81 J	0.77 J
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		10.4	3.5 [13.7]	1.5	0.0024	0.12	0.81	1.1	<0.0021	0.93	<0.002	0.0011 J	0.0019 J	0.0034	0.14	0.01	1	1.2
Chrysene	mg/kg	22 {C}	390 (C)		25.59	7.1 [33.1]	0.13	0.004	0.24	1.7	2.3	0.0019 J	2	<0.002	0.0015 J	0.0025	0.0032	0.22	0.01	1.8	2.2
Dibenzo(a,h)anthracene	mg/kg				1.3 J	0.43 J [1.6 J]	<0.04	<0.0041	0.01 J	0.11 J	0.15 J	<0.0042	0.12	<0.004	<0.0042	<0.0043	<0.0041	0.09	<0.0042	0.09	0.09 J
Fluoranthene	mg/kg	310 {N}	4,100 {N}		76.11	23.18 [108.7]	0.4	0.01	0.57	5.3	7.2	0.005	5.8 J	<0.004 J	0.0046 J	0.0052 J	0.0073 J	0.21 J	0.02 J	4.9 J	6.5 J
Fluorene	mg/kg	310 {N}	4,100 {N}		6.2	2.3 [10]	<0.04	0.0042	0.04	0.51	0.75	<0.0042	<0.08	<0.004	< 0.0042	< 0.0043	<0.0041	<0.02	<0.0042	0.29	0.69
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		11.6	4.1 [15]	0.15	0.0035	0.12	0.97	1.2	0.0028	1	< 0.002	0.001 J	0.002 J	0.0021	<0.01	0.0076	0.9	0.93
Naphthalene	mg/kg				<8.5	7.8 [<21]	<0.21	0.006 J	<0.11	<0.6	<0.8	<0.02	< 0.43	<0.02	<0.02	<0.02	<0.02	<0.11	<0.02	<0.42	<0.6
Phenanthrene	mg/kg	230 {N}	3,100 {N}		67.13	21.31 [105.9]	0.28	0.02	0.41	4.3	6	0.0033	4	< 0.002	0.0036	0.0043	0.0038	0.09	0.02	3.7	5.6
Pyrene	mg/kg	230 {N}	3,100 {N}		56.25	17.65 [80.35]	0.33	0.01	0.45	4	5.3	0.0047	4.2	<0.002	0.004	0.0055	0.0062	0.21	0.02	3.8	5
PCBs																					
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volatile Organics																					
1,2,3-Trichloropropane	mg/kg				R	<0.0030 [<0.0030 J]	<0.0030 J	<0.0030	<0.0030 J	<0.0030 J	R	<0.0030	<0.0030 J	<0.0030	<0.0030 J	<0.0030 J	0.080 J	R	<0.0030 J	<0.0030 J	<0.0030 J
1,2,4-Trimethylbenzene	mg/kg				R	<0.0020 [<0.0020 J]	<0.0020 J	<0.0020	<0.0020 J	<0.0020 J	R	<0.0020	<0.0020 J	<0.0020	<0.0020 J	<0.0020 J	<0.0020 J	R	<0.0020 J	<0.0020 J	<0.0020 J
m,p-Xylene	mg/kg				R	<0.0030 [<0.0030 J]	<0.0030 J	<0.0030	<0.0030 J	<0.0030 J	R	<0.0030	<0.0030	<0.0030	<0.0030 J	<0.0030 J	<0.0030 J	<0.0030	<0.0030 J	<0.0030	<0.0030
Methylene Chloride	mg/kg	85 (C)	380 (C)		R	<0.0010 [0.0060 J]	0.0040 J	<0.0010	<0.0010 J	<0.0010	0.0040 J	<0.0010	<0.0010	<0.0010	<0.0010 J	<0.0010 J	<0.0010 J	<0.0010	<0.0010 J	<0.0010	0.0050 K
Semivolatile Organics	/1	04 (1)	440 (1)		0.070.1	0.00 11 0.401		0.44	0.44	1.0	0.44	0.40	0.000	2 44	0.44	0.40	0.45	0.40	0.44	0.40	0.40
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		0.070 J	0.29 J [<0.42]	0.090 J	<0.41	<0.41	1.2	<0.41	<0.42	0.090 J	<0.41	<0.41	<0.42	<0.45	<0.42	<0.41	<0.43	<0.42
3,3'-Dichlorobenzidine	mg/kg				<0.93	<0.83 J [<0.83]	<0.81	<0.81	<0.80	<170	<0.80	<0.82	<0.86 J	<0.80	<0.81	<0.83	<0.89	<0.82	<0.81	<0.84	<0.83
4-Methylphenol	mg/kg	470 {N}	6 100 (NI)		<0.47 NA	<0.42 [<0.42]	<0.41 NA	<0.41 NA	<0.41 NA	0.10 J NA	<0.41 NA	<0.42 NA	<0.43 NA	<0.41 NA	<0.41 NA	<0.42 NA	<0.45 NA	<0.42 NA	<0.41 NA	<0.43 NA	<0.42 NA
Acenaphthene Acenaphthylene	mg/kg	230 (N)	6,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg mg/kg	2,300 {N}	3,100 (N) 31,000 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 (C)		NA	NA NA	NA.	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA.	NA NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	mg/kg				1.4 J	1.7 J [0.17 J]	1.3 J	<0.41	0.50 J	<86	0.29 J	< 0.42	3.5 J	<0.41	<0.41	<0.42	0.080 J	<0.42	0.35 J	0.070 J	<0.42
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	mg/kg				0.44 J	0.74 [<0.42]	0.43	<0.41	0.15 J	2.0	0.060 J	<0.42	0.80	<0.41	<0.41	<0.42	<0.45	<0.42	0.090 J	<0.43	<0.42
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		<0.47	<0.42 [<0.42]	<0.41	<0.41	<0.41	<0.43	<0.41	<0.42	<0.43	<0.41	<0.41	<0.42	<0.45	<0.42	<0.41	<0.43	<0.42
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		<0.47	<0.42 [<0.42]	<0.41	<0.41	<0.41	<86	<0.41	<0.42	<0.43	<0.41	<0.41	<0.42	<0.45	<0.42	0.10 B	0.070 B	<0.42
Fluoranthene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	32 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg	E 2 (C)			NA <2.4	NA	NA -2.1	NA -2.1	NA -2.0	NA 0.47 L	NA -2.0	NA -2.1	NA -2.2	NA -2.0	NA -2.1	NA -2.1	NA 22.2	NA -2.1	NA -2.1	NA -2.1	NA -2.1
Pentachlorophenol Phenanthrene	mg/kg mg/kg	5.3 {C} 230 {N}	24 {C} 3,100 {N}		<2.4 NA	<2.1 [<2.1] NA	<2.1 NA	<2.1 NA	<2.0 NA	0.47 J NA	<2.0 NA	<2.1 NA	<2.2 NA	<2.0 NA	<2.1 NA	<2.1 NA	<2.3 NA	<2.1 NA	<2.1 NA	<2.1 NA	<2.1 NA
Pyrene	mg/kg	230 (N)	3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
See footnotes on last page.	mg/ng	200 (14)	0,100 (IN)		11/7	14/7	14/7	14/7	14/7	147	14/7	14/7	14/1	11/1	14/7	14/7	14/7	117	14/5	INA	14/7
See loomoles on last bace																					

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Depth (N) Date Collected: United State (Realsefural) (Industrial) Point (Industrial) State (Realsefural) (Industrial) (Industrial) State (Realsefural) (Industrial) (In					I	D=0040	DT0D45	D=0040	D=0040	DECRAO	DT0D04	D=0000	DECREE	DECRAE	D=0000	DT0000	DECREE	DECRAO	D=0D40	DT0D44	DT0D40	DT0D40
Date Collected: Units (Residential) (Industrial) (Industrial) (Residential) (Industrial) (Industrial) (Residential) (Industrial) (Industri	Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB16	DTSB17	DTSB18	DTSB19	DTSB20	DTSB21	DTSB22	DTSB23	DTSB35	DTSB36	DTSB37	DTSB38	DTSB39	DTSB40	DTSB41	DTSB42	DTSB43
Organics Marked	,		Soil RBC	Soil RBC	Background	_		-	_		_	-	-									
uminum mg/kg 7,800 (N) 100,000 (N) 40,041 14,700 15,400 13,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 14,000 19,000 15,600 10,700 12,200 16,000 19		Units	(Residential)	(Industrial)	Point	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98
Immorpy mg/kg 3.13 fky 40.88 ky	Inorganics																					
senic mg/kg	Aluminum	<u> </u>	, , ,	, ,	40,041	,		-,	,	- 7	- /	-,	,	,	-,	- /	,	- /	-,	-,	-,	,
million mg/kg 1.564 (N) 20.440 (N) 209 (N) 48.0 L 72.0 L [527 L] 45.2 L 48.5 L 49.3 L 62.8 L 48.4 L 63.6 L 73.8 K 47.2 K 58.4 K 60.8 K 71.4 K 70.6 K 39.1 K 64.8 K 60.3 K ryllion mg/kg 1.566 (N) 204.4 (N) 102 (N) 0.910 B 1.30 B 0.990 B 1.00 B 0.790 B 0.79	Antimony	mg/kg	()	, ,																		
mg/kg 15.6 N 204.4 N 10.2 N 9.910 B 1.30 B 0.390 B 0.790 B 0.990 B 1.00 B 0.780 B 0.890 B 0.920 B 1.10 B 1.00 B 1.30 B 0.990 B 1.40 B 1.10 B 0.860 B 1.20 B 1.10 B 0.860 B 1.20 B 1.2	Arsenic	mg/kg	(-)	- (-)	(-)														00			
Admitim Mg/kg 3,9 N 51.1 N 0.69 N 4.0120 4.0120 4.0120 4.0120 4.0120 4.0120 4.0120 4.0120 4.013	Barium	mg/kg	, , ,	, , ,																		
	Beryllium	mg/kg	15.6 {N}	204.4 {N}	. ,	0.910 B	1.30 B [0.930 B]	0.790 B	0.960 B	1.00 B	0.780 B	0.890 B	0.920 B	1.10 B		1.30 B	0.990 B	1.40 B	1.10 B	0.860 B		1.10 B
March Marc	Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}		<0.120 [<0.130]		<0.130			<0.120	<0.130	<0.130		<0.120	<0.130	<0.140	<0.130	<0.130		
Dealt mg/kg	Calcium	mg/kg				1,370 B	1,680 B [1,430 B]	1,350 B	,	1,300 B	1,330 B	1,250 B	1,160 B	1,650 B	1,280 B	1,510 B	1,580 B	1,460 B	1,290 B	1,210 B	1,680 B	
pper mg/kg 312.9 (N) 4,088 (N) 53.5 (N) 99.4 K 233 K (31.0 K) 25.1 K 12.9 B 33.3 K 110 K 23.8 K 10.0 B 156 12.7 B 14.9 B 47.1 21.9 20.2 14.0 B 30.9 26.3 mg/kg 2,346 (N) 30,600 (N) 50,962 (N) 30,800 47,800 [34,700] 31,400 30,000 38,900 23,900 34,800 26,200 29,600 41,300 41,600 29,500 37,400 31,900 23,200 43,500 42,600 41,600 29,500 37,400 31,900 23,000 43,600 29,500 41,000 41,600 29,500 37,400 31,900 23,000 42,600 42,600 42,600 41,600 41,600 29,500 37,400 31,900 23,000 42,600 42,600 42,600 41,600 41,600 29,500 37,400 31,900 23,000 42,600 42,600 42,600 41,600 41,600 29,500 37,400 31,900 23,000 42,600 42,600 42,600 41,600 41,600 41,600 41,600 29,500 37,400 31,900 23,000 42,600 42,600 42,600 41,60	Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	38.1	53.5 [36.8]	32.8	32.5	38.0	38.4	40.7	29.3	47.2	51.9	58.0	43.6	38.3	41.2	19.8	63.4	50.2
m mg/kg 2,346 (N) 30,660 (N) 50,962 (N) 30,800 47,800 [34,700] 31,400 30,000 38,900 23,900 34,800 26,200 29,600 41,300 41,600 29,500 37,400 31,900 23,200 43,500 42,600 mg/kg 400 750 28.8 32.9 47.1 [14.5] 13.5 11.4 18.9 62.7 13.0 11.8 66.9 13.6 17.9 72.8 12.8 16.4 10.3 34.4 39.2 10.0 mg/kg 5,700 5,810 [5,080] 5,270 (6,630 5,790 3.310 7,890 5,870 5,090 6,670 8,930 6,080 11,400 70.3 1,060 39.9 120 14.0 mg/kg 156.4 (N) 2,044 (N) 2,543 (N) 553 1,110 [733] 462 470 564 541 437 918 746 815 1,490 1,070 703 1,060 390 1,170 1,190 156.4 [N] 2,244 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.8 K 13.8 K 15.4 Mg/kg 156.4 (N) 2,044 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.8 K 13.8 K 15.4 Mg/kg 156.4 (N) 2,044 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.8 K 13.8 K 15.4 Mg/kg 156.4 (N) 2,044 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.8 K 13.8 K 15.4 Mg/kg 156.4 (N) 2,044 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.8 K 13.8 K 15.4 Mg/kg 156.4 (N) 2.4 Mg/kg 156.4 (N) 62.8 (N) 15.1 K 14.8 K [13.4 K] 13.8 K 15.4 K 14.4 K 17.1 L 14.1 25.5 K 14.8 L 14.4 L 17.1 L 14.1 25.5 K 14.8 L 14.4 L 17.1 L 14.1 25.5 K 14.4 L 17.1 L 14.1 25.5 K 14.4 L 17.1 L 14.1 L 12.5 L 14.4 L 17.1 L 14.1	Cobalt	mg/kg			72.3	15.9 L	20.3 L [20.5 L]	15.3 L	15.2 L	15.4 L	12.3 L	12.0 L	16.4 L	16.9	17.0	28.7	20.6	15.6	19.4	10.7	21.1	22.1
add mg/kg 400 750 26.8 32.9 47.1 [14.5] 13.5 11.4 18.9 62.7 13.0 11.8 66.9 13.6 17.9 72.8 12.8 16.4 10.3 34.4 39.2 agnesium mg/kg 5,700 5,810 [5,080] 5,270 6,630 5,790 3,310 7,890 5,870 5,090 6,670 8,930 6,080 11,400 7,610 2,950 5,390 9,120 groupy mg/kg 2.35 30.66 0.13 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.	Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 (N)	99.4 K	233 K [31.0 K]	25.1 K	12.9 B	33.3 K	110 K	23.8 K	10.0 B	136	12.7 B	14.9 B	47.1	21.9	20.2	14.0 B	30.9	26.3
agnesium mg/kg 5,700 5,810 5,080 5,270 6,630 5,790 3,310 7,890 5,870 5,090 6,670 8,930 6,080 11,400 7,610 2,950 5,390 9,120	Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	30,800	47,800 [34,700]	31,400	30,000	38,900	23,900	34,800	26,200	29,600	41,300	41,600	29,500	37,400	31,900	23,200	43,500	42,600
anganese mg/kg 156.4 {N} 2,044 {N} 2,044 {N} 2,044 {N} 553 1,110 [733] 462 470 564 541 437 918 746 815 1,490 1,070 703 1,060 390 1,170 1,190 ercury mg/kg 2.35 30.66 0.13 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.120 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.130 <.0.	Lead	mg/kg	400	750	26.8	32.9	47.1 [14.5]	13.5	11.4	18.9	62.7	13.0	11.8	66.9	13.6	17.9	72.8	12.8	16.4	10.3	34.4	39.2
Percury mg/kg 2.35 30.66 0.13 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130 <0.130	Magnesium	mg/kg				5,700	5,810 [5,080]	5,270	6,630	5,790	3,310	7,890	5,870	5,090	6,670	8,930	6,080	11,400	7,610	2,950	5,390	9,120
Color Colo	Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	553	1,110 [733]	462	470	564	541	437	918	746	815	1,490	1,070	703	1,060	390	1,170	1,190
Nation Mg/kg Mg/	Mercury	mg/kg	2.35	30.66	0.13	<0.130	<0.130 [<0.130]	<0.120	<0.130	<0.120	<0.130	<0.120	<0.130	<0.130	<0.120	<0.120	< 0.130	<0.140	<0.130	<0.130	<0.130	<0.130
Selenium mg/kg 39.1 {N} 511 {N} <0.610 L <0.620 L <0.640 L <0.600 L <0.630 L <0.630 L <0.630 L <0.640 L <0.640 L <0.620 L <0.620 L <0.620 L <0.640 L <0.630 L <0.630 L <0.630 L <0.640 L <0.640 L <0.640 L <0.620 L <0.640 L <0.640 L <0.630 L <0.630 L <0.630 L <0.640 L	Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 (N)	15.1 K	14.8 K [13.4 K]	13.8 K	16.2 K	13.5 K	9.00 K	14.8 K	13.8 K	15.4	14.4	17.1	14.1	25.5	17.1	11.8	14.0	16.1
Solid Mig/kg Mi	Potassium	mg/kg				1,550 K	1,890 K [1,260 K]	1,540 K	1,850 K	1,720 K	839 K	1,880 K	1,380 K	1,430 K	1,710 K	1,870 K	1,770	2,880 K	2,190 K	974 K	1,590 K	2,370 K
nalium mg/kg 0.548 {N} 7.154 {N} 2.11 {N} 0.360 B 1.00 B [0.380 B] 0.470 B <0.250 L <0.240 L 0.310 B 0.530 B 0.990 B 0.510 B <0.250 L <0.250 L <0.250 L <0.260 L <0.270 L <0.250 L <0.250 L <0.250 L <0.260 L <0.2	Selenium	mg/kg	39.1 {N}	511 {N}		<0.610 L	<0.620 L [<0.640 L]	<0.600 L	<0.630 L	<0.610 L	<0.630 L	<0.600 L	<0.640 L	<0.660 L	<0.620 L	<0.620 L	<0.640 L	<0.680 L	<0.630 L	<0.630 L	<0.650 L	<0.640 L
anadium mg/kg 7.8 {N} 102.2 {N} 108 {N} 53.6 K 85.0 K [59.6 K] 54.8 K 53.7 K 70.2 K 40.6 K 59.4 K 47.9 K 52.6 K 69.7 J 71.6 J 53.4 J 63.4 J 59.5 J 38.1 J 77.0 J 75.7 J 75	Sodium	mg/kg				105 B	108 B [104 B]	103 B	104 B	99.8 B	86.9 B	107 B	91.0 B	173 B	193 B	165 B	168 B	166 B	141 B	94.3 B	123 B	114 B
nc mg/kg 2,346 {N} 30,660 {N} 202 {N} 81.7 B 101 B [39.3 B] 40.1 B 32.0 B 40.4 B 60.3 B 34.9 B 29.5 B 157 B 78.8 B 35.2 B 119 B 46.6 B 67.8 B 36.0 B 102 B 137 B scellaneous ercent Solids % NA	Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.360 B	1.00 B [0.380 B]	0.470 B	<0.250 L	<0.240 L	0.310 B	0.530 B	0.990 B	0.510 B	<0.250 L	<0.250 L	<0.260 L	<0.270 L	<0.250 L	<0.250 L	<0.260 L	<0.260 L
iscellaneous ercent Solids	Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	53.6 K	85.0 K [59.6 K]	54.8 K	53.7 K	70.2 K	40.6 K	59.4 K	47.9 K	52.6 K	69.7 J	71.6 J	53.4 J	63.4 J	59.5 J	38.1 J	77.0 J	75.7 J
ercent Solids % NA	Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	81.7 B	101 B [39.3 B]	40.1 B	32.0 B	40.4 B	60.3 B	34.9 B	29.5 B	157 B	78.8 B	35.2 B	119 B	46.6 B	67.8 B	36.0 B	102 B	137 B
H PH Units NA	Miscellaneous																			•		
	Percent Solids	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Organic Carbon mg/kg NA	рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

Table 3-1 Historical Soil Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								new River Uni	it, Radford Arn	ny Ammunition	i Plant, Radioi	ra, virginia									
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB44	DTSB45	DTSB46A	DTSB46B	DTSB47A	DTSB47B	DTSB48A	DTSB48B	DTSB50A	DTSB51A	DTSB52A	DTSB54A	DTSB55A	DTSB55B	DTSB56A	DTSB57A	DTSB58A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0.5 - 1	0.5 - 1	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/18/98	08/18/98	06/12/02	06/12/02	06/12/02	06/12/02	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04
Explosives																					
None Detected					[]		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides						I															
2,4-D	mg/kg				NA	NA	0.171	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dalapon	mg/kg				NA	NA	0.099 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dicamba	mg/kg				NA	NA	0.00849 K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MCPP	mg/kg				NA	NA	13.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides																					
4,4'-DDD	mg/kg				NA	NA	0.0034 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	mg/kg				NA	NA	0.0291 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																					
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	5.1	0.0012 B	0.054 B	0.00095 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		2.4 J [<2.2]	< 0.43	27	0.0066 B	1.5	0.002 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<8.3 [<4.3]	<0.85	0.24 J	0.0021 J	<0.0026	0.00087 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		6.4 [1.3]	0.49	37	0.0091	2.7	0.0036	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		9.6 [2]	1.2	66	0.03	7.6	0.016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		10.4 J [2.1 J]	1.3 J	57	0.021	6.5	0.013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		12.74 [3]	1.9	81	0.046	10	0.022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				3.9 J [0.93 J]	0.72 J	38	0.02	4.2	0.012	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		6 [1.6]	0.82	26	0.011	3.1	0.0062	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Chrysene	mg/kg	22 {C}	390 {C}		11.11 [2.4]	1.6	61	0.033	7.6	0.015	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene Fluoranthene	mg/kg mg/kg	310 {N}	4,100 {N}		0.7 J [0.11 J] 34.09 J [7.5 J]	0.09 4.1 J	9.9 180	0.005 0.097	1.1	0.0027 0.04	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N) 4,100 (N)		4.8 [0.52]	<0.08	28	0.097	1.6	0.004 0.002 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		4.9 [1]	0.76	47	0.0073	5.2	0.002 3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg	0.22 (0)			<4.2 [<2.2]	<0.43	29	0.0023 B	0.14 B	0.0013 0.0011 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		32.8 [6.9]	2.6	160	0.0023 B	16	0.023	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Pyrene	mg/kg	230 {N}	3,100 {N}		25.6 [5.7]	3.2	130	0.078 J	16	0.033 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	- 0 0	. ,	, , ,			I															ı
None Detected					NA	NA															
Volatile Organics						I															
1,2,3-Trichloropropane	mg/kg				<0.0030 [<0.0030]	<0.0030 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	mg/kg				<0.0020 [<0.0020]	<0.0020 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	mg/kg				<0.0030 [<0.0030]	<0.0030 J	< 0.014	<0.011	< 0.013	<0.011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		<0.0010 [0.0050 K]	0.0050 J	< 0.0069	< 0.0056	< 0.0067	<0.0056	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics																					
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		0.19 K [0.090 J]	< 0.43	NA	NA	NA	NA	0.092	0.089	< 0.0087	0.051	< 0.043	< 0.0091	0.51 J	0.024	0.011	<0.0088	<0.010 L
3,3'-Dichlorobenzidine	mg/kg				<8.8 [<0.88 J]	<0.84	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	mg/kg				<0.45 [<0.45]	<0.43	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	NA	NA	NA	NA	NA	0.73	1.8	0.026	0.82	0.64	<0.0091	13	0.078	0.30	<0.0088	0.062 L
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	0.15 J	<0.081	0.016	0.083 J	<0.043	<0.0091	0.31 J	<0.0083	0.072 J	<0.0088	0.011 J
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	1.6	3.1	0.094	1.9	1.1	<0.0091	23	0.073	0.65	<0.0088	0.15 L
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA	NA	NA	NA	NA	3.7	5.9	0.21	3.5	2.2	<0.0091	43	0.15	1.3	<0.0088	0.35 L
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA	NA	NA	NA	NA	2.8	5.0	0.18	2.7	2.0	<0.0091	32	0.12	0.97	<0.0088	0.27 L
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.7	7.7	0.33	4.4	3.0	0.012	54	0.18	2.3	<0.0088	0.43 L
Benzo(g,h,i)perylene	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.5 J	3.0	0.13	1.3 J	1.0	<0.0091	15 J	0.061	0.54 J	<0.0088	0.18 L
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		NA 62 L(4 A I)	NA -0.42	NA NA	NA NA	NA NA	NA NA	1.6	2.4	0.084	1.6	0.94	<0.0091	16 NA	0.056	2.3	<0.0088	0.15 L NA
Carbazole Chrysene	mg/kg mg/kg	22 {C}	390 {C}		6.3 J [1.4 J] NA	<0.43 NA	NA NA	NA NA	NA NA	NA NA	NA 3.4	NA 5.2	NA 0.23	NA 3.4	NA 2.1	NA <0.0091	NA 43	NA 0.14	NA 1.3	NA <0.0088	0.38 L
Dibenzo(a,h)anthracene	mg/kg mg/kg	22 {U} 	390 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.55 J	<0.081	0.23	<0.33	0.31	<0.0091	<3.4	0.14	0.21 J	<0.0088	<0.010 L
Dibenzo(a,rr)aritriracerie Dibenzofuran	mg/kg				1.4 K [0.44 J]	<0.43	NA NA	NA NA	NA NA	NA NA	0.55 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		<0.45 [<0.45]	<0.43	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		<0.45 J [<0.45]	0.12 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Fluoranthene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA NA	NA NA	NA NA	NA NA	9.9	17	0.54	9.8	6.7	0.013	130	0.47	3.4	<0.0088	0.94
Fluorene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.69	1.8	0.024	0.84	0.59	<0.0091	130	0.072	0.27	<0.0088	0.069 L
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA	NA	NA NA	NA	NA	1.4 J	2.9	0.12	1.2 J	1.0	<0.0091	15 J	0.068	0.55 J	<0.0088	0.17 J
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	0.40 J	0.32	<0.0087	0.15 J	0.086	<0.0091	1.3 J	0.16	0.024 J	<0.0088	<0.010 L
Pentachlorophenol	mg/kg	5.3 {C}	24 {C}		<2.2 J [<2.2]	<2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 (N)		NĂ 1	NA	NA	NA	NA	NA	7.4 J	14	0.30	8.3 J	5.5	<0.0091	110 J	0.43	2.5 J	<0.0088	0.73 J
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	7.6	9.8	0.37	7.9	4.3	0.012	99	0.28 J	2.7	<0.0088	0.70
															•	•	•				

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

OI- N				- "" 14"	DTOD44	DTOD 45	DTODAGA	DTOD 46D		DT00470			DTODEOA	DTODE44	DTODEOA	DTODE44	DTODEEA	DTODEED	DTODECA	DTODEZA	DTODEOA
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB44	DTSB45	DTSB46A	DTSB46B	DTSB47A	DTSB47B	DTSB48A	DTSB48B	DTSB50A	DTSB51A	DTSB52A	DTSB54A	DTSB55A	DTSB55B	DTSB56A	DTSB57A	DTSB58A
Sample Depth (ft):	Heite	Soil RBC	Soil RBC	Background	0.5 - 1 08/18/98	0.5 - 1 08/18/98	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	1 - 3 07/20/04	0 - 0.5 07/13/04	0 - 0.5	0 - 0.5 07/13/04	0 - 0.5 07/13/04	0 - 0.5	1 - 3 07/20/04	0 - 0.5 07/13/04	0 - 0.5 07/13/04	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/18/98	08/18/98	06/12/02	06/12/02	06/12/02	06/12/02	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04
Inorganics																					
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	28,500 [13,000]	8,890	15,400	15,700	15,500	16,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.670 [<0.670]	<0.650	0.220 B	<0.610 L	0.330 B	<0.620 L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	5.70 [7.60 K]	3.60	4.00	2.11	3.65	4.51	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	63.6 K [56.2 B]	45.5 K	58.2	61.5	78.7	56.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.60 K [1.20]	0.740 B	1.11 K	1.11 K	1.20 K	1.38 K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.130 [<0.140]	<0.130	0.100 J	<0.120	<0.120	<0.120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium	mg/kg				1,530 B [1,160 B]	920 B	1,340 J	1,120 J	850 J	988 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	36.0 [58.5]	27.3	27.4 J	23.2 J	39.3 J	42.7 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt	mg/kg			72.3	13.3 [21.8]	13.3	19.2 J	10.7 J	24.3 J	26.1 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	24.3 [27.9]	19.4	83.4 L	19.8 L	25.9 L	19.3 L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	47,500 [43,600]	20,000	23,300 J	21,100 J	40,000 J	35,600 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/kg	400	750	26.8	7.90 [55.6]	22.7	37.7 K	14.1 K	18.2 K	18.4 K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	mg/kg				19,100 [6,680]	4,000	4,040	4,300	5,000	5,680	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	571 [1,250]	746	946 J	484 J	1,490 J	981 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	mg/kg	2.35	30.66	0.13	<0.130	<0.130	0.0300 J	0.0300 J	0.0300 J	0.0200 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	24.2 [12.1]	9.60	15.1	17.0	17.2	17.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	mg/kg				3,890 K [1,390 K]	886 K	1,530	1,370	1,630	1,630	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	mg/kg	39.1 {N}	511 {N}		<0.670 L [<0.670 L]	<0.650 L	0.430 L	<1.23 L	<1.22 L	<1.24 L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/kg				138 B [108 B]	97.6 B	22.0 B	18.0 B	18.0 B	18.0 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.300 B [<0.270 L]	1.00 B	0.350 J	0.210 J	0.230 J	0.200 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	72.5 J [76.7 J]	36.6 J	44.6 J	38.4 J	65.3 J	66.2 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	58.6 B [87.5 B]	54.4 B	91.7 J	42.6 J	41.2 J	39.5 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous																					
Percent Solids	%				NA	NA	NA	NA	NA	NA	83	82	77	81	77	74	78	80	74	75	64
рН	pH Units				NA	NA	6.68 J	6.3 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	17,300 K	12,500 K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

									V TRIVET OTHE, TO	adioid 7 iiiiiy 7	Ammunition Pla	ant, readiora,	viigiilia									
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB59A	DTSB59B	DTSB60A	DTSB62A	DTSB63A	DTSB64A	DTSB65A	DTSB66A	DTSB67A	DTSB67B	DTSB68A	DTSB69A	DTSB70A	DTSB71A	DTSB72A	DTSB73A	DTSB74A	DTSB75A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04
Explosives																						
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides																						
2,4-D	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dalapon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dicamba	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MCPP	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides																						
4,4'-DDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																						
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 {N}	6,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg		39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg mg/kg	2.2 {C} 22 {C}	39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene	mg/kg	22 {C}	390 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs						U.	U.		U.	L.	<u>.</u>		l.				Į.	Į.	l .	L.	l.	
None Detected																						
Volatile Organics						•	•	•	•	•		•							•	•		
1,2,3-Trichloropropane	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics																						
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		0.054 J	<0.0083	<0.011	<0.0091	<0.0087	< 0.030	<0.010	<0.0084	2.0	<0.0081	< 0.0092	<0.0085	<0.0092	<0.0095	<0.0087	<0.0089	<0.0081	<0.0090
3,3'-Dichlorobenzidine	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.69 J	<0.0083	<0.011	<0.0091	0.049 J	0.16	<0.010	<0.0084	10	<0.0081	0.11	0.022	0.013	0.028	0.011	<0.0089	<0.0081	0.063 J
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		0.099 J	<0.0083	<0.011	<0.0091	0.013 J	<0.030	<0.010	<0.0084	0.21 J	<0.0081	0.043 J	<0.0085	<0.0092	<0.0095	<0.0087	<0.0089	<0.0081	0.011
Anthracene	mg/kg	2,300 {N}	31,000 {N}		1.5	<0.0083	<0.011	<0.0091	0.13 J	0.34	0.021	<0.0084	17	<0.0081	0.29	0.043	0.037	0.068	0.030	0.018	<0.0081	0.20 J
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		2.9	<0.0083	<0.011	<0.0091	0.34 J	0.96	0.058	<0.0084	27	<0.0081	0.69	0.16	0.10	0.20	0.069	0.040	0.0093	0.45 J
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		2.2	<0.0083	<0.011	<0.0091	0.28 J	0.88	0.058	<0.0084	22	<0.0081	0.60	0.15	0.11 L	0.19	0.067	0.034	0.0089	0.42 J
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		3.7	<0.0083	<0.011	<0.0091	0.46 J	1.5	0.11	<0.0084	36	<0.0081	1.1	0.25	0.13	0.21	0.097	0.039	0.014	0.45 J
Benzo(g,h,i)perylene	mg/kg	2.2 (C)			1.1 J	<0.0083	<0.011	<0.0091	0.19 J	0.49	0.041	<0.0084	11 J	<0.0081	0.35 J	0.085	0.076	0.12	0.052	0.024	<0.0081	0.28 J
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		1.0 NA	<0.0083 NA	<0.011 NA	<0.0091 NA	0.14 NA	0.33 NA	0.031 NA	<0.0084 NA	9.3 NA	<0.0081 NA	0.26 NA	0.066 NA	0.087 L NA	0.16 NA	0.048 NA	0.035 NA	<0.0081 NA	0.32 J NA
Carbazole	mg/kg mg/kg	22 {C}	390 (C)		2.7	<0.0083	<0.011	<0.0091	0.38 J	0.97	0.066	<0.0084	25	<0.0081	0.77	0.16	0.13 L	0.24	0.084	0.048	0.0089	0.55 J
Chrysene Dibenzo(a.h)anthracene	mg/kg		390 (C)		0.37 J	<0.0083	<0.011	<0.0091	<0.0087	<0.030	0.066	<0.0084	3.6 J	<0.0081	0.77 0.12 J	0.16	<0.0092	0.24 0.056 J	0.064 0.024 J	<0.0089	<0.0081	0.55 J 0.13 J
Dibenzo(a,rr)antrilacerie Dibenzofuran	mg/kg				NA	V0.0063	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.023 NA	NA	0.036 J	0.024 J NA	NA	NA	NA NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Fluoranthene	mg/kg	310 (N)	4,100 {N}		8.3	<0.0083	0.012	0.0091	0.84 J	2.6	0.15	<0.0084	78	<0.0081	1.7	0.42	0.35 L	0.65	0.19	0.11	0.015	1.4 J
Fluorene	mg/kg	310 (N)	4,100 (N)		0.67	<0.0083	<0.011	<0.0091	0.045 J	0.14	<0.010	<0.0084	10	<0.0081	0.096	0.018	0.012	0.026	0.011	<0.0089	<0.0081	0.070 J
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		1.1 J	<0.0083	<0.011	<0.0091	0.17 J	0.49	0.035	<0.0084	10 J	<0.0081	0.34 J	0.078	0.076	0.12	0.052	0.024	<0.0081	0.28 J
Naphthalene	mg/kg				0.15 J	<0.0083	<0.011	<0.0091	<0.0087	0.042	<0.010	<0.0084	11 J	<0.0081	0.015 J	<0.0085	<0.0092	<0.0095	<0.0087	<0.0089	<0.0081	0.013 J
Pentachlorophenol	mg/kg	5.3 {C}	24 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 (N)		6.7 J	<0.0083	<0.011	<0.0091	0.43 J	1.5	0.067	<0.0084	74 J	<0.0081	1.1 J	0.24	0.16	0.33	0.13	0.072	<0.0081	0.83 J
Pyrene	mg/kg	230 (N)	3,100 {N}		6.2	<0.0083	<0.011	<0.0091	0.69 J	1.5	0.10	<0.0084	60	<0.0081	1.4	0.27	0.22	0.40	0.14	0.076	0.013	0.82 J
See footnotes on last page.							-						-					-			-	

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:		Adiusted	Adiusted	Facility-Wide	DTSB59A	DTSB59B	DTSB60A	DTSB62A	DTSB63A	DTSB64A	DTSB65A	DTSB66A	DTSB67A	DTSB67B	DTSB68A	DTSB69A	DTSB70A	DTSB71A	DTSB72A	DTSB73A	DTSB74A	DTSB75A
Sample Depth (ft):		Adjusted Soil RBC	Adjusted	,	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	Soil RBC	Background Point	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/20/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04	07/13/04
Inorganics	Omio	(Residential)	(Industrial)	Point	01710704	01120104	07710704	07710704	07710704	07710704	07710704	01/10/04	07710704	01120104	07710704	07710704	01/10/04	01/10/04	01710704	07710704	01/10/04	07710704
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	NA	NA	NA	NA	NA	NA	l NA	l NA	NA	NA	NA	NA	NA	NA	l NA	NA	NA	NA
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA NA	NA NA																
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA										
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA
Cadmium	mg/kg	3.9 (N)	51.1 {N}	0.69 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA
Calcium	mg/kg	5.5 (N)		0.03 (14)	NA NA	NA NA																
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.	NA NA
Cobalt	mg/kg			72.3	NA	NA	NA	NA	NA NA	NA	NA	NA.	NA.	NA								
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	NA	NA	NA	NA	NA NA	NA	NA	NA	NA.	NA								
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	NA																	
Lead	mg/kg	400	750	26.8	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA
Magnesium	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA	NA.	NA.	NA.	NA.	NA NA
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	NA	NA	NA NA	NA	NA NA	NA	NA.	NA	NA.	NA	NA NA	NA	NA	NA	NA	NA.	NA	NA
Mercury	mg/kg	2.35	30.66	0.13	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA NA
Potassium	mg/kg				NA	NA	NA	NA	NA NA	NA	NA	NA.	NA NA	NA	NA NA							
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	NA NA	NA	NA	NA.	NA.	NA								
Sodium	mg/kg				NA																	
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	NA																	
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 (N)	NA																	
Zinc	mg/kg	2,346 {N}	30,660 (N)	202 {N}	NA																	
Miscellaneous			, , ,	, ,		·	·	·	·				·				•	•				-
Percent Solids	%				77	81	58	73	77	66	66	79	76	82	73	79	72	71	76	75	83	74
рН	pH Units				NA																	
Total Organic Carbon	mg/kg				NA																	

Table 3-1Historical Soil Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								ivew	/ Kiver Offit, K	aulolu Allily F	Ammunition Pl	ani, Kaulolu, 1	virgiriia					
Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB76A	DTSB77A	DTSB77B	DTSB78A	DTSB80A	DTSB81A	DTSB82A	DTSB83A	DTSB84A	DTSB85A	DTSB86A	DTSB87A	DTSB88A	DTSB89A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/13/04	07/13/04	07/20/04	07/13/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/23/04
Explosives		,	,							I								
None Detected					NA	NA	NA	NA	l NA	NA	NA	NA	NA	l NA	l NA	NA	NA	NA
Herbicides					INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	IVA	INA
					NIA	NIA	NIA	NIA	NIA	NIA.	NIA.	NIA	NIA	NIA.	NIA.	NIA	NIA	NIA
2,4-D	mg/kg				NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
Dalapon	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dicamba MCPP	mg/kg							NA NA					NA NA	1	NA NA			NA NA
	mg/kg				NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides				1														
4,4'-DDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																		
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 {N}	6,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs																		
None Detected	1		-					-	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Volatile Organics																		
1,2,3-Trichloropropane	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics																		
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		< 0.0081	<0.18	<0.0080	< 0.0092	<0.0081	< 0.0091	< 0.0085	< 0.0085	<0.0086	<0.0088	<0.0082	<0.0081	< 0.0083	< 0.0074
3,3'-Dichlorobenzidine	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.11 J	2.5	<0.0080	< 0.0092	<0.0081	< 0.0091	<0.0085	< 0.0085	<0.0086	<0.0088	<0.0082	<0.0081	< 0.0083	0.013
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		0.0089	<0.18	<0.0080	<0.0092	<0.0081	0.020	<0.0085	<0.0085	<0.0086	<0.0088	<0.0082	<0.0081	<0.0083	0.0081
Anthracene	mg/kg	2,300 {N}	31,000 {N}		0.22 J	4.8	<0.0080	0.018	<0.0081	0.056	<0.0085	<0.0085	<0.0086	<0.0088	<0.0082	<0.0081	0.015	0.038
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.46 J	6.5	<0.0080	0.074	0.024 K	0.11	<0.0085	0.014	<0.0086	<0.0088	0.023	0.0097	0.061	0.076
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.39 J	6.3	<0.0080	0.079	0.024 K	0.093	<0.0085	0.011	<0.0086	<0.0088	0.025	0.010	0.052	0.068
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.59 J	6.8	<0.0080	0.12	0.041 K	0.22	<0.0085	0.017	<0.0086	<0.0088	0.045	0.018	0.084	0.12
Benzo(g,h,i)perylene	mg/kg				0.21 J	4.3	<0.0080	0.050	0.018	0.071	<0.0085	<0.0085	<0.0086	<0.0088	0.020	0.0085	0.038	0.055
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		0.18 J	4.8	<0.0080	0.034	0.0085 K	0.069	<0.0085	<0.0085	<0.0086	<0.0088	0.014	<0.0081	0.024	0.037
Carbazole	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		0.43 J	7.1	<0.0080	0.072	0.024 K	0.13	<0.0085	0.014	<0.0086	<0.0088	0.027	0.011	0.051	0.076
Dibenzo(a,h)anthracene	mg/kg		`		0.060 J	<0.18	<0.0080	0.015	<0.0081	< 0.0091	<0.0085	<0.0085	<0.0086	<0.0088	<0.0082	<0.0081	<0.0083	0.016
Dibenzofuran	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		1.2 J	27	<0.0080	0.16	0.050 K	0.21	<0.0085	0.037	<0.0086	<0.0088	0.061	0.023	0.15	0.21
Fluorene	mg/kg	310 (N)	4,100 {N}		0.11 J	2.8	<0.0080	<0.0092	<0.0081	< 0.0091	<0.0085	<0.0085	<0.0086	<0.0088	<0.0082	<0.0081	<0.0083	0.010
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		0.21 J	4.2	<0.0080	0.043	0.017 K	0.069	<0.0085	<0.0085	<0.0086	<0.0088	0.019	<0.0081	0.036	0.050
Naphthalene	mg/kg				<0.0081	0.25	<0.0080	<0.0092	<0.0081	<0.0091	<0.0085	<0.0085	<0.0086	<0.0088	<0.0082	<0.0081	<0.0083	< 0.0074
Pentachlorophenol	mg/kg	5.3 {C}	24 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 {N}	3,100 (N)		0.95 J	22	<0.0080	0.077	0.022 K	0.073	<0.0085	0.026	<0.0086	<0.0088	0.021	0.0085	0.076	0.11
Pyrene	mg/kg	230 {N}	3,100 {N}		0.81 J	7.7 J	<0.0080	0.12	0.035 K	0.16	<0.0085	0.022	<0.0086	<0.0088	0.040	0.015	0.094	0.13
See footnotes on last page.	·										•							

Table 3-1 Historical Soil Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:		Adjusted	Adjusted	Facility-Wide	DTSB76A	DTSB77A	DTSB77B	DTSB78A	DTSB80A	DTSB81A	DTSB82A	DTSB83A	DTSB84A	DTSB85A	DTSB86A	DTSB87A	DTSB88A	DTSB89A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	1 - 3	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/13/04	07/13/04	07/20/04	07/13/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/23/04
Inorganics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,								•				•			
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	NA													
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA													
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	NA													
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	NA													
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	NA													
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	NA													
Calcium	mg/kg				NA													
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	NA													
Cobalt	mg/kg			72.3	NA													
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	NA													
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	NA													
Lead	mg/kg	400	750	26.8	NA													
Magnesium	mg/kg				NA													
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	NA													
Mercury	mg/kg	2.35	30.66	0.13	NA													
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 (N)	NA													
Potassium	mg/kg				NA													
Selenium	mg/kg	39.1 {N}	511 {N}		NA													
Sodium	mg/kg				NA													
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	NA													
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	NA													
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	NA													
Miscellaneous																		
Percent Solids	%				83	74	84	72	82	73	79	79	78	76	81	83	80	91
рН	pH Units				NA													
Total Organic Carbon	mg/kg				NA													

RBC Risk Based Concentration.

{C} Carcinogen.

Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

Constituent concentration quanitified as estimated.

Estimated concentration bias high.

Estimated concentration bias low.

Constituent concentration rejected. NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

3,980 Inorganics constituent concentration exceeds Background Point Estimate.

3,980 Inorganics constituent concentration exceeds Background Form Essential Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Historical Sediment Sampling Results, Building Debris Disposal Trench New River Unit, Radford Army Ammunition Plant, Radford, Virginia

		Adimeted	Adhratad	Facility Wide	DTOD4	DT0D4 0	DT000	DT0D0 0	DT0D0	DT0D0.0	DT0D4	DT0D05	DT0D00	DT0D07	DTODOO	DECDOO	DT0D40
Sample Name:		Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide	DTSD1	DTSD1-2	DTSD2	DTSD2-2 0 - 0.5	DTSD3 0 - 0.5	DTSD3-2	DTSD4	DTSD05	DTSD06	DTSD07	DTSD08	DTSD09	DTSD10
Sample Depth (ft): Date Collected:	Units	(Residential)	(Industrial)	Background Point	0 - 0.5 07/17/98	0 - 0.5 08/17/98	0 - 0.5 07/17/98	0 - 0.5 08/17/98	0 - 0.5 07/17/98	0 - 0.5 08/17/98	0 - 0.5 08/17/98	0 - 0.5 06/20/02	0 - 0.5 06/20/02	0 - 0.5 06/20/02	0 - 0.5 06/20/02	0 - 0.5 06/20/02	0 - 0.5 06/20/02
	Units	(Residential)	(industrial)	Polit	07/17/90	00/17/90	07/17/96	00/17/90	07/17/96	00/17/90	00/17/90	00/20/02	06/20/02	00/20/02	00/20/02	00/20/02	00/20/02
Explosives		ī ·			1			1	1		1						
None Detected												NA	NA	NA	NA	NA	NA
Herbicides																	
None Detected					NA	NA	NA	NA	NA	NA	NA		NA		NA	NA	NA
Organochlorine Pesticides		. = (0)	10 (0)														
4,4'-DDD	mg/kg	2.7 (C)	12 {C}		NA	NA	NA	NA	NA	NA	NA	0.00115 J	NA	0.0011 J	NA	NA	NA
4,4'-DDE	mg/kg	1.9 (C)	8.4 (C)		NA	NA	NA	NA	NA	NA	NA	0.00212 B	NA	0.00169 B	NA	NA	NA
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA NA	NA	NA	NA	NA	0.00123 B	NA	0.00069 B	NA	NA	NA
Alpha-Chlordane	mg/kg				NA	NA		NA	NA	NA NA	NA	0.00037 J	NA NA	0.00039 J	NA	NA	NA
Delta-BHC Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00134 0.00159	NA NA	0.00354 0.0014	NA NA	NA NA	NA NA
PAHs	mg/kg	0.04 (0)	0.10 (0)		INA	INA	INA	INA	INA	INA	INA	0.00133	INA	0.0014	INA	INA	IVA
2-Methylnaphthalene	ma/ka	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	0.03	0.025	0.015	0.0042 B	0.006 B	0.074
Acenaphthene	mg/kg mg/kg	470 (N)	6,100 (N)		<0.03	<0.6	<0.02	<0.49	<0.02	<0.47 J	<0.5	0.03	0.025 0.0025 B	0.015 0.0036 B	0.0042 B 0.0018 B	0.000 B	0.074
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<0.05	<1.2	<0.02	<0.49	<0.02	<0.47 J	<1	<0.0068	0.0023 B	<0.0034	<0.0032	<0.0023 B	<0.0061
Anthracene	mg/kg	2,300 (N)	31,000 {N}		<0.0031	<0.06	<0.0026	<0.97	<0.0028	<0.94 J	0.03 J	0.19	0.0017 3	0.0053	0.0032 0.0023 J	0.0029 J	0.41
Benzo(a)anthracene	mg/kg	0.22 {C}	31,000 {N} 3.9 {C}		<0.0031	0.01 J	<0.0026	<0.04	<0.0028	<0.04 J	0.03 J	0.19 0.41	0.0044	0.0053	0.0023 3	0.0029 3	0.41
Benzo(a)pyrene	mg/kg	0.22 (C) 0.022 (C)	0.39 (C)		<0.0031	0.01 J	<0.0026	<0.04	<0.0028	<0.04 J	0.03 J	0.35	0.02	0.013	0.013	0.013	0.88
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 {C}		<0.0061	<0.12	<0.0052	<0.09	<0.0056	<0.04 J	<0.1	0.62	0.034	0.023	0.026	0.014	1.2
Benzo(g,h,i)perylene	mg/kg				<0.0061	<0.12	<0.0052	<0.09	<0.0056	<0.09 J	0.04 J	0.17 J	0.011 J	0.0069 J	0.0082 J	0.023	0.28 J
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		<0.0031	<0.06	<0.0026	<0.04	<0.0028	<0.04 J	0.01 J	0.17	0.013	0.008	0.0076	0.009	0.37
Chrysene	mg/kg	22 {C}	390 (C)		<0.0031	0.02 J	0.0044	<0.04	<0.0028	<0.04 J	0.09	0.4	0.022	0.014	0.015	0.015	0.8
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		<0.0061	<0.12	< 0.0052	< 0.09	< 0.0056	<0.09 J	<0.1	0.041	0.0029 J	< 0.0034	< 0.0032	< 0.0041	0.076
Fluoranthene	mg/kg	310 {N}	4,100 {N}		0.01	0.03 J	0.01	< 0.09	0.01	0.01 J	0.2	1	0.034	0.024	0.024	0.024	2
Fluorene	mg/kg	310 {N}	4,100 {N}		<0.0061	<0.12	< 0.0052	< 0.09	< 0.0056	<0.09 J	<0.1	0.13	0.003 J	0.0038	0.0024 J	0.0028 J	0.24
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		<0.0031	<0.06	<0.0026	<0.04	<0.0028	<0.04 J	0.04 J	0.2	0.012	0.008	0.0099	0.011	0.36
Naphthalene	mg/kg	160 {N}	2,000 {N}		< 0.03	<0.6	<0.02	< 0.49	<0.02	<0.47 J	<0.5	0.053 B	0.024 B	0.019 B	0.014 B	0.014 B	0.091
Phenanthrene	mg/kg	230 (N)	3,100 {N}		0.0049	0.04 J	0.0042	<0.04	0.0048	0.02 J	0.21	1	0.034	0.022	0.012	0.013	1.9
Pyrene	mg/kg	230 {N}	3,100 {N}		0.01	0.02 J	0.01	<0.04	0.01	<0.04 J	0.1	0.94 J	0.035 J	0.027 J	0.025 J	0.025 J	1.7 J
PCBs																	
None Detected					NA	NA	NA	NA	NA	NA	NA						
Volatile Organics																	
Acetone	mg/kg	7,000 {N}	92,000 {N}		<0.0080 J	<0.0090 J	<0.0090	<0.0070 J	<0.0090	<0.0070 J	<0.0080 J	0.030 B	0.022 B	0.032 B	0.028 B	<0.012	0.025 B
Carbon Disulfide	mg/kg	780 {N}	10,000 {N}		<0.0080 J	<0.0090	<0.0090	<0.0070 J	<0.0090	<0.0070	<0.0080	0.00099 B	0.0010 B	0.0012 B	0.0014 B	0.0014 B	0.0013 B
Methylene Chloride	mg/kg	85 (C)	380 (C)		<0.0020 J	< 0.0020	< 0.0020	<0.0010 J	< 0.0020	0.0050	<0.0020	<0.010	<0.0090	< 0.0099	< 0.0094	< 0.012	< 0.0089
						0.0040.1	0.0000		0.0000	0 0010				A I A	N 1 A		N.1.4
p-Isopropyltoluene	mg/kg				<0.0010 J	0.0040 J	<0.0020	<0.0010 J	<0.0020	<0.0010	<0.0010	NA 0.00004.D	NA 0.0000 I	NA 0.0044 P	NA 0.00041	NA	NA 0.0007 D
Toluene	mg/kg mg/kg	630 {N}	8,200 {N}		<0.0020 J	<0.0020	<0.0020	<0.0010 J <0.0020 J	<0.0020	<0.0020	<0.0020	0.00094 B	<0.0090 L	0.0011 B	<0.0094 L	NA <0.012 L	0.0027 B
Toluene Trichloroethene	mg/kg		8,200 {N} 7.2 {C}					<0.0010 J								NA	
Toluene Trichloroethene Semivolatile Organics	mg/kg mg/kg mg/kg	630 {N} 1.6 {C}	7.2 {C}		<0.0020 J <0.0040 J	<0.0020 <0.0040	<0.0020 <0.0040	<0.0010 J <0.0020 J 0.0030 J	<0.0020 <0.0050	<0.0020 <0.0040	<0.0020 <0.0040	0.00094 B <0.010	<0.0090 L <0.0090	0.0011 B <0.0099	<0.0094 L <0.0094	NA <0.012 L <0.012	0.0027 B <0.0089
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol	mg/kg mg/kg mg/kg	630 {N} 1.6 {C}	7.2 {C} 510 {N}		<0.0020 J <0.0040 J <0.50	<0.0020 <0.0040 <0.57	<0.0020 <0.0040 <0.58	<0.0010 J <0.0020 J 0.0030 J	<0.0020 <0.0050 0.060 J	<0.0020 <0.0040 <0.47	<0.0020 <0.0040 <0.52	0.00094 B <0.010	<0.0090 L <0.0090	0.0011 B <0.0099	<0.0094 L <0.0094	NA <0.012 L <0.012	0.0027 B <0.0089
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate	mg/kg mg/kg mg/kg	630 {N} 1.6 {C}	7.2 {C}		<0.0020 J <0.0040 J	<0.0020 <0.0040	<0.0020 <0.0040	<0.0010 J <0.0020 J 0.0030 J	<0.0020 <0.0050	<0.0020 <0.0040	<0.0020 <0.0040	0.00094 B <0.010	<0.0090 L <0.0090	0.0011 B <0.0099	<0.0094 L <0.0094	NA <0.012 L <0.012	0.0027 B <0.0089
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics	mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N}	7.2 {C} 510 {N} 10,000 {N}		<0.0020 J <0.0040 J <0.50 <0.50	<0.0020 <0.0040 <0.57 0.080 B	<0.0020 <0.0040 <0.58 <0.58	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46	<0.0020 <0.0050 0.060 J <0.59	<0.0020 <0.0040 <0.47 <0.47	<0.0020 <0.0040 <0.52 0.090 B	0.00094 B <0.010 NA NA	<0.0090 L <0.0090 NA NA	0.0011 B <0.0099 NA NA	<0.0094 L <0.0094 NA NA	NA <0.012 L <0.012 NA NA	0.0027 B <0.0089 NA NA
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum	mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N}	7.2 {C} 510 {N} 10,000 {N}	 40,041	<0.0020 J <0.0040 J <0.50 <0.50	<0.0020 <0.0040 <0.57 0.080 B	<0.0020 <0.0040 <0.58 <0.58	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46	<0.0020 <0.0050 0.060 J <0.59	<0.0020 <0.0040 <0.47 <0.47 9,250	<0.0020 <0.0040 <0.52 0.090 B	0.00094 B <0.010 NA NA	<0.0090 L <0.0090 NA NA	0.0011 B <0.0099 NA NA	<0.0094 L <0.0094 NA NA	NA <0.012 L <0.012 NA NA	0.0027 B <0.0089 NA NA
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N}	 40,041	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860	<0.0020 <0.0040 <0.58 <0.58 15,200 <0.870	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 8,980 <0.690	<0.0020 <0.0050 0.060 J <0.59 10,800 <0.880	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690	<0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780	0.00094 B <0.010 NA NA 17,100 0.890 L	<0.0090 L <0.0090 NA NA 14,900 0.470 B	0.0011 B <0.0099 NA NA 15,500 <0.980 L	<0.0094 L <0.0094 NA NA 18,600 <0.930 L	NA <0.012 L <0.012 NA NA 20,200 <1.19 L	0.0027 B <0.0089 NA NA 12,500 0.370 B
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C}	40,041 15.8 {C}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J	<0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 8,980 <0.690 11.6 J	<0.0020 <0.0050 0.060 J <0.59 10,800 <0.880 4.20	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2	<0.0020 <0.0040 <0.052 0.090 B 8,970 <0.780 5.40 J	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J	<0.0090 L <0.0090 NA NA NA 0.470 B 1.96 J	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980	<0.0094 L <0.0094 NA NA NA <0.930 L 3.59 J	NA <0.012 L <0.012 S NA NA NA 20,200 <1.19 L 3.08 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N}	40,041 15.8 {C} 209 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K	<0.0020 <0.0040 <0.58 <0.58 <0.58 15,200 <0.870 8.00 92.0 K	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 8,980 <0.690 11.6 J 104 K	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.880 <0.55 K 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L	<0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3	<0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 85.3	<0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8	NA <0.012 L <0.012 C NA NA 20,200 <1.19 L 3.08 J 99.1	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C}	40,041 15.8 {C}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J	<0.0020 <0.0040 <0.58 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 <0.690 11.6 J 104 K 1.10	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.880 <0.20 72.5 K <0.700 B 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B	<0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 85.3 0.880 J	<0.0094 L <0.0094 NA NA NA O.930 L 3.59 J 98.8 1.12 J	NA <0.012 L <0.012 L NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N}	40,041 15.8 {C} 209 {N} 1.02 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 5.0 K 0.750 J 60,400 J	<pre><0.0020 <0.0040 <0.58 <0.58 </pre> <pre>15,200 <0.870 8.00 92.0 K 1.20 B 50,800</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.690 <0.690 11.6 J 104 K 1.10 88,100 J	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.880 <0.55 K 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 L <0.980 J 52,600	<0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8	NA <0.012 L <0.012 C NA NA 20,200 <1.19 L 3.08 J 99.1	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 0.43 {C} 1,564 {N} 15.6 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3	<0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.690 11.6 J 104 K 1.10 88,100 J 56.2	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.25 K <0.700 B <0.4,100 <0.4.9 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 B 55.3 0.880 J 52,600 24.0 J	<0.0094 L <0.0094 S NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J	NA <0.012 L <0.012 L NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 1.56 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 306.6 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L	<0.0020 <0.0040 <0.58 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.690 <0.690 11.6 J 104 K 1.10 88,100 J	 <0.0020 <0.0050 <0.050 <0.59 <0.880 <0.20 <0.725 K <0.700 B <0.44,9 <0.880 K 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 85.3 0.880 J 52,600 24.0 J 10.7 L	<0.0094 L <0.0094 D NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L	NA <0.012 L <0.012 L NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N} 23.5 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 306.6 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3	<0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 8,980 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.25 K <0.700 B <0.4,100 <0.4.9 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 B 55.3 0.880 J 52,600 24.0 J	<0.0094 L <0.0094 S NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J	NA <0.012 L <0.012 L NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 312.9 {N} 5,500 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N} 72,000 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B	<0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B	<pre><0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 52.5 15.0 K 14.8 B</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 8,980 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B	 <0.0020 <0.0050 <0.050 <0.59 10,800 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 B5.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J	<0.0094 L <0.0094 D NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J	NA <0.012 L <0.012 L NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 312.9 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400	<pre><0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 8,980 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B	 <0.0020 <0.0050 <0.050 <0.59 10,800 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 B5.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J 18,500	<0.0094 L <0.0094 D NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900	NA <0.012 L <0.012 L <0.012 NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N} 23.5 {N} 312.9 {N} 400	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N} 72,000 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N}	<0.0020 J <0.0040 J <0.50 <0.50 17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8	<pre><0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 8,980 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B 44,900 23.5	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.725 K <0.700 B <0.4,100 <0.49 <0.700 B <	<0.0020 <0.0040 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 	0.0011 B <0.0099 NA NA 15,500 <0.980 L <0.980 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J	NA <0.012 L <0.012 L NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 5,500 {N} 400 156.4 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N} 72,000 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N}	<0.0020 J <0.0040 J <0.50 <0.50 <17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J	 <0.0020 <0.0040 <0.58 <0.58 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 614 	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 <0.690 11.6 J 1.10 K 1.10 S 56.2 27.6 L 4.40 B 44,900 23.5 7,720 1,640 J	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 14.2 3,750 387 	<0.0020 <0.0040 <0.47 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340	 <0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J 	0.00094 B <0.010 NA NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 S5.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829	NA <0.012 L <0.012 L <0.012 L NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 312.9 {N} 5,500 {N} 400 156.4 {N} 2.35	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 20.44 {N} 306.6 {N} 4,088 {N} 72,000 {N} 75.00 {N} 75.000 {N} 30.66	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N}	<0.0020 J <0.0040 J <0.50 <0.50 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468 <0.150	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 750 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B	 <0.0020 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B 44,900 23.5 7,720	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 14.2 3,750 	<0.0020 <0.0040 <0.47 <0.47 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140	 <0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320	NA <0.012 L <0.012 L NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555 <0.0800 L
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 5,500 {N} 400 156.4 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N} 72,000 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N}	<0.0020 J <0.0040 J <0.50 <0.50 <17,200 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J <0.170	<pre><0.0020 <0.0040 </pre> <pre><0.0040 </pre> <pre><0.58 </pre> <pre><0.58 </pre> <pre> 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 614 <0.180</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.690 11.6 J 104 K 1.10 B8,100 J 56.2 27.6 L 4.40 B 44,900 23.5 7,720 1,640 J <0.140	 <0.0020 <0.0050 <0.0050 <0.59 <0.880 <0.700 B 64,100 <0.700 B <	<0.0020 <0.0040 <0.47 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340	<0.0020 <0.0040 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160	0.00094 B <0.010 NA NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 S5.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L 14.6	NA <0.012 L <0.012 L NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 400 156.4 {N} 2.35 156.4 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 2044 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	 <0.0020 J <0.0040 J <0.50 <0.50 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468 <0.150 16.3 K 	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J <0.170 7.90 J	<pre><0.0020 <0.0040 </pre> <pre><0.0040 </pre> <pre><0.58 </pre> <pre><0.58 </pre> <pre> 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 614 <0.180 16.4 K</pre>	<0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B 44,900 23.5 7,720 1,640 J <0.140 8.00 J	 <0.0020 <0.0050 <0.050 <0.59 10,800 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 14.2 3,750 387 <0.170 10.6 K 	<0.0020 <0.0040 <0.47 <0.47 <0.47 9,250 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140 20.8 K	<.0.0020 <0.0040 <0.0040 <0.052 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160 8.70 J	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L 13.2	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 12.1 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 B 55.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L 14.0	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L	NA <0.012 L <0.012 L <0.012 L NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L 14.0	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 5555 <0.0800 L 13.1
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 312.9 {N} 5,500 {N} 400 156.4 {N} 156.4 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	 <0.0020 J <0.0040 J <0.50 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468 <0.150 16.3 K 2,140 J 	<0.0020 <0.0040 <0.0040 <0.0040 <0.860 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J <0.170 7.90 J 776 K	 <0.0020 <0.0040 <0.58 <0.58 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 614 <0.180 16.4 K 1,930 J 	 <0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B 44,900 23.5 7,720 1,640 J <0.140 B 8.00 J 1,760 K 	 <0.0020 <0.0050 <0.0050 <0.59 10,800 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 14.2 3,750 387 <0.170 10.6 K 1,180 J 	 <0.0020 <0.0040 <0.47 <0.47 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140 20.8 K 1,250 K 	 <0.0020 <0.0040 <0.052 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160 8.70 J 1,670 K 	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L 13.2 1,510	 <0.0090 L <0.0090 NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 12.1 1,280 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 B 85.3 0.880 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L 14.0 1,440	 <0.0094 L <0.0094 NA NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L 14.6 1,810 	NA <0.012 L <0.012 L <0.012 NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L 14.0 1,840	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555 <0.0800 L 13.1 2,200
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Din-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 312.9 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 750 2,044 {N} 30.66 2,044 {N}	40,041 	 <0.0020 J <0.0040 J <0.50 <0.50 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468 <0.150 16.3 K 2,140 J 0.860 B 	<0.0020 <0.0040 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J <0.170 7.90 J 776 K <0.350	<0.0020 <0.0040 <0.0040 <0.58 <0.58 15,200 <0.870 8.00 92.0 K 1.20 B 50,800 52.5 15.0 K 14.8 B 32,300 21.2 6,790 614 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 <0.180 </td <td> <0.0010 J <0.0020 J <0.0030 J <0.46 <0.46 <0.46 <0.690 <0.690 <0.690 <0.690 <0.690 <0.690 <0.690 <0.76 L <0.76 L <0.72 G <0.72 G <0.72 G <0.72 G <0.140 B <0.00 J <0.760 K <0.280 </td> <td> <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.25 K <0.700 B 64,100 24.9 8.80 K 117,8 17,300 14.2 3,750 387 <0.170 10.6 K 1,180 J <0.350 </td> <td><0.0020 <0.0040 <0.0040 <0.47 <0.47 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140 20.8 K 1,250 K <0.280 L</td> <td> <0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160 8.70 J 1,670 K <0.310 </td> <td>0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L 13.2 1,510 <2.00</td> <td><0.0090 L <0.0090 NA NA NA NA 14,900 0.470 B 1.96 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 12.1 1,280 <1.80</td> <td>0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 L <0.980 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L 14.0 1,440 <1.98</td> <td><0.0094 L <0.0094 L <0.0094 NA NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L 14.6 1,810 <1.88</td> <td>NA <0.012 L <0.012 L <0.012 NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L 14.0 1,840 <2.39</td> <td>0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555 <0.0800 L 13.1 2,200 <1.78</td>	 <0.0010 J <0.0020 J <0.0030 J <0.46 <0.46 <0.46 <0.690 <0.690 <0.690 <0.690 <0.690 <0.690 <0.690 <0.76 L <0.76 L <0.72 G <0.72 G <0.72 G <0.72 G <0.140 B <0.00 J <0.760 K <0.280 	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 <0.25 K <0.700 B 64,100 24.9 8.80 K 117,8 17,300 14.2 3,750 387 <0.170 10.6 K 1,180 J <0.350 	<0.0020 <0.0040 <0.0040 <0.47 <0.47 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140 20.8 K 1,250 K <0.280 L	 <0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160 8.70 J 1,670 K <0.310 	0.00094 B <0.010 NA NA 17,100 0.890 L 2.59 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L 13.2 1,510 <2.00	<0.0090 L <0.0090 NA NA NA NA 14,900 0.470 B 1.96 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 12.1 1,280 <1.80	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 L <0.980 J 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L 14.0 1,440 <1.98	<0.0094 L <0.0094 L <0.0094 NA NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L 14.6 1,810 <1.88	NA <0.012 L <0.012 L <0.012 NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L 14.0 1,840 <2.39	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555 <0.0800 L 13.1 2,200 <1.78
Toluene Trichloroethene Semivolatile Organics 4-Methylphenol Di-n-Butylphthalate Inorganics Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium	mg/kg	630 {N} 1.6 {C} 39 {N} 780 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N}	7.2 {C} 510 {N} 10,000 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	 <0.0020 J <0.0040 J <0.50 <0.50 <0.740 6.50 93.5 K 0.960 B 59,900 43.8 15.4 K 15.0 B 29,900 18.1 6,620 468 <0.150 16.3 K 2,140 J 0.860 B 510 B 	 <0.0020 <0.0040 <0.57 0.080 B 8,690 <0.860 5.00 J 75.0 K 0.750 J 60,400 J 22.3 8.80 L 10.1 B 20,400 17.8 3,070 B 904 J <0.170 7.90 J 7.90 J 7.96 K <0.350 225 B 	 <0.0020 <0.0040 <0.58 <0.58 <0.58 <0.870 <0.870 <0.870 <0.800 <0.55 <0.800 <0.800	 <0.0010 J <0.0020 J 0.0030 J <0.46 <0.46 <0.46 <0.690 11.6 J 104 K 1.10 88,100 J 56.2 27.6 L 4.40 B 44,900 23.5 7,720 1,640 J <0.140 8.00 J 1,760 K <0.280 187 B 	 <0.0020 <0.0050 <0.060 J <0.59 <0.880 4.20 72.5 K 0.700 B 64,100 24.9 8.80 K 11.7 B 17,300 14.2 3,750 387 <0.170 10.6 K 1,180 J <0.350 344 B 	 <0.0020 <0.0040 <0.47 <0.47 <0.690 13.2 358 L 1.30 B 62,600 73.0 26.2 L 13.3 B 56,200 28.6 4,560 3,340 <0.140 20.8 K 1,250 K <0.280 L 	 <0.0020 <0.0040 <0.52 0.090 B 8,970 <0.780 5.40 J 80.7 K 0.740 J 98,600 J 33.6 10.9 L 10.3 B 20,200 15.3 6,130 539 J <0.160 8.70 J 1,670 K <0.310 257 B 	0.00094 B <0.010 NA NA NA 17,100 0.890 L 2.59 J 95.3 1.03 J 78,000 29.6 J 10.6 L 12.9 J 19,800 19.0 J 5,010 641 0.0400 L 13.2 1,510 <2.00 105 J	 <0.0090 L <0.0090 NA NA NA 14,900 0.470 B 1.96 J 76.9 0.940 J 46,100 29.0 J 11.4 L 11.1 J 24,500 14.9 J 3,950 510 0.0300 L 12.1 1,280 <1.80 87.4 J 	0.0011 B <0.0099 NA NA NA 15,500 <0.980 L <0.980 S 52,600 24.0 J 10.7 L 11.1 J 18,500 10.7 J 5,140 589 <0.0900 L 14.0 1,440 <1.98 103 J	<0.0094 L <0.0094 L <0.0094 NA NA 18,600 <0.930 L 3.59 J 98.8 1.12 J 72,100 32.2 J 12.7 L 11.2 J 22,900 17.7 J 5,320 829 <0.0900 L 14.6 1,810 <1.88 95.2 J	NA <0.012 L <0.012 L <0.012 L 0.012 L 0.012 NA NA NA 20,200 <1.19 L 3.08 J 99.1 0.970 J 76,200 31.1 J 11.0 L 12.1 J 19,500 21.4 J 4,810 627 <0.110 L 14.0 1,840 <2.39 130 J	0.0027 B <0.0089 NA NA 12,500 0.370 B 4.37 J 90.7 1.09 J 89,500 48.7 J 13.5 L 12.7 J 22,700 18.2 J 7,010 555 <0.0800 L 13.1 2,200 <1.78 134 J

RBC Risk Based Concentration.

Carcinogen.

Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Analyte was detected in the associated method blank. Constituent concentration quanitified as estimated.

Estimated concentration bias high.

Estimated concentration bias low.

Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

3,980 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Table 3-3
Historical Surface Water Sampling Results, Building Debris Disposal Trench
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:		Aquatic Life	Human Health All	DTSW1	DTSW1-2	DTSW2	DTSW2-2	DTSW3	DTSW3-2	DTSW4	DTSW05	DTSW06	DTSW07	DTSW08	DTSW09	DTSW10
Date Collected:	Units	Freshwater Chronic	Other Surface Waters	07/17/98	08/17/98	07/17/98	08/17/98	07/17/98	08/17/98	08/17/98	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02
Explosives																
None Detected									NA		NA	NA	NA	NA	NA	NA
Herbicides																
None Detected				NA		NA		NA	NA	NA						
Organochlorine Pesticides																
4,4'-DDT	ug/L	0.001	0.0059	NA	0.00516 J	NA	< 0.02	NA	NA	NA						
Dieldrin	ug/L	0.056	0.0014	NA	0.00548 J	NA	0.00591 J	NA	NA	NA						
Endrin Ketone	ug/L			NA	0.00437 J	NA	0.00599 J	NA	NA	NA						
PAHs																
2-Methylnaphthalene	ug/L			NA	0.03 B	0.03 B	< 0.05	< 0.05	0.03 B	0.13 B						
Acenaphthene	ug/L		2,700	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Acenaphthylene	ug/L			<1	<1	<1	<1	<1	NA	<1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.04 J
Fluorene	ug/L		14,000	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.03 J
Naphthalene	ug/L			<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	0.04 B	0.04 B	0.03 B	0.03 B	0.04 B	0.13 B
Perchlorate																
None Detected				NA												
PCBs																
None Detected				NA												
Volatile Organics		•					•		•		•	•	•	•		
Bromodichloromethane	ug/L		460	<1.0	< 0.60	<1.0	< 0.60	<1.0	23	< 0.60	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Disulfide	ug/L			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.30 B	<1.0	0.22 B	0.34 B	0.31 B	0.29 B
Chloroform	ug/L		29,000	<1.0	<0.80	<1.0	<0.80	<1.0	4.0	<0.80	0.11 J	0.11 J	0.070 J	0.080 J	<1.0	0.090 J
Semivolatile Organics																
Di-n-Butylphthalate	ug/L		12,000	2.0 B	<10	3.0 B	<10	<10	<10	<10	NA	NA	NA	NA	NA	NA
Inorganics													•	•		
Aluminum	ug/L			68.5 B	82.3 J	67.9 B	78.5 J	76.7 B	49.8 J	67.4 J	340	245	120 J	343	603	300
Antimony	ug/L		4,300	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	0.740 B	0.380 B	<5.00	<5.00	<5.00
Barium	ug/L			60.6 B	64.5 K	60.1 B	66.5 K	66.2 B	60.0 L	61.0 K	77.1	75.7	72.6	82.5	77.4	77.6
Calcium	ug/L			50,600 B	63,100 J	50,100 B	65,000 J	55,100 B	56,000	59,900 J	54,100	52,300	47,000	52,500	48,300	54,900
Copper	ug/L	9 (H)		18.1 B	34.8 J	19.8 B	27.4 J	30.7 B	12.0 K	16.7 J	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Iron	ug/L			114 B	105	127 B	106	115 B	76.3 J	87.6 J	238 J	314 J	203 J	328 J	507 J	294 J
Lead	ug/L	14 {H}		<2.00	4.60 K	<2.00	2.30 K	<2.00	<2.00	<2.00	1.10 B	0.340 B	0.300 B	0.210 B	0.480 B	0.150 B
Magnesium	ug/L			13,700 B	14,100	13,600 B	14,600	15,000 B	12,700	13,200	16,200	15,900	15,400	17,400	15,900	16,100
Manganese	ug/L			5.60 B	3.40 J	5.30 B	3.60 J	5.40 B	4.00 J	3.40 J	10.8	11.5	12.2	17.2	19.8	10.8
Nickel	ug/L	20 {H}	4,600	2.80 K	5.50 J	2.80 K	5.00 J	2.70 K	3.40 K	3.20 J	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Potassium	ug/L			1,930 B	2,490 K	1,980 B	2,510 K	2,110 B	2,340 K	2,260 K	3,250	3,050	3,210	3,670	3,360	3,160
Silver	ug/L			2.10 B	<2.00	<2.00 J	<2.00	<2.00 J	<2.00 L	<2.00	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L			26,900	26,500 K	26,900	25,300 K	29,300	22,400 K	25,600 K	31,500	31,100	31,200	35,300	32,200	31,200
Thallium	ug/L		6.3	<2.00 L	<2.00 L	5.70 B	6.10 L	2.30 B	<2.00 L	7.20 L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Zinc	ug/L	120 {H}	69,000	20.2 B	46.2 J	21.9 B	34.2 J	20.4 B	38.7 K	21.6 J	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Miscellaneous																
Hardness	mg/L			NA	202	196	181	NA	NA	204						

[{]H} Value has not been adjusted for hardness.

B (Inorganics) Constituent concentration quantified as estimated.

B (Organics) Constituent was detected in the associated method blank.

J Constituent concentration quantified as estimated.

K Estimated concentration bias high.

L Estimated concentration bias low.

NA Not Analyzed.

^{10.6} J Constituent concentration exceeds Virginia Surface Water Human Health Standards (All Other Surface Waters).

^{10.6} J Constituent concentration exceeds Virginia Surface Water Aquatic Life Freshwater Chronic Standard.

				E 117 147 1			1	ı	atora Army Amn	1			I		1		Ι .	Ι .	
Sample Name:		Adjusted	Adjusted	Facility-Wide	407712012	4077121224	4077122436	407736012	4077361224	407760012	4077601224	SS-09	SS-14	TR-03E	BLASB01A	BLASB01B	BLASB02A	BLASB02B	BLASB03A
Sample Depth (ft):	l luita	Soil RBC	Soil RBC	Background	0 - 1	1 - 2 12/09/97	2 - 3 12/09/97	0 - 1	1 - 2	0 - 1	1 - 2	0 - 0.5	0 - 0.16	0.04 - 0.16	0 - 0.5	2 - 4	0 - 0.5 06/11/02	2 - 4 06/20/02	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	06/04/97	03/31/98	04/02/98	06/11/02	06/20/02	06/11/02	06/20/02	06/11/02
Asbesos	0/ 4 0 D				l NIA I	NIA.	T NIA	l NIA	NIA		NIA.	N10	NIA I	NIA	l NA I	NIA	l NIA	NIA.	
Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives		220 (NI)	2.400 (NI)		NIA I	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	.0.4	-0.1	-0.4	-0.4	.0.0
1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	mg/kg	230 {N} 0.78 {N}	3,100 {N} 10 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
2,4,6-Trinitrotoluene	mg/kg mg/kg	0.76 (N) 21 (C)	95 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.1	<0.1	<0.1	<0.1	<0.2
2,4-Dinitrotoluene	mg/kg	16 (N)	200 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.2	<0.2	0.05 J	<0.2	0.43 K
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 (N)		NA NA	NA	NA NA	NA NA	NA	NA	NA NA	1.9 C,J	NA NA	NA	<0.2	<0.2	<0.2	<0.2	<0.4
4-Amino-2,6-Dinitrotoluene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	<0.2	<0.2	<0.2	<0.4
m-Nitrotoluene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.4	<0.4	<0.4	<0.4	<0.8
Nitroglycerine	mg/kg	0.78 {N}	10 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.34	<0.41	< 0.35	<0.47	<0.68
Herbicides																			
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA
Organochlorine Pesticides																			
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	0.043 I	NA	NA	NA	NA	<0.00798	NA	NA
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00798	NA	NA
Aldrin	mg/kg	0.038 {C}	0.17 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.042 I,R,J	NA NA	NA NA	NA NA	NA NA	<0.00798	NA NA	NA NA
Alpha-Chlordane Dieldrin	mg/kg		0.19 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.089 I	NA NA	NA NA	NA NA	NA NA	<0.00798	NA NA	NA NA
Endosulfan I	mg/kg mg/kg	0.04 {C}	0.18 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.062 I,R 0.022 I	NA NA	NA NA	NA NA	NA NA	<0.00798 J <0.00798	NA NA	NA NA
Endosulfan II	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.022 I 0.101 I,R	NA NA	NA NA	NA NA	NA NA	<0.00798	NA NA	NA NA
Endrin	mg/kg	2.4 {N}	31 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.044 I,R	NA NA	NA NA	NA NA	NA NA	<0.00798	NA NA	NA NA
Endrin Aldehyde	mg/kg				NA NA	NA	NA NA	NA	NA	NA	NA	0.024 I,R	NA	NA	NA NA	NA	<0.00798 L	NA NA	NA NA
Endrin Ketone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00798	NA	NA
Gamma-Chlordane	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.01 I	NA	NA	NA	NA	<0.00798	NA	NA
Heptachlor Epoxide	mg/kg	0.07 {C}	0.31 {C}		NA	NA	NA	NA	NA	NA	NA	0.015 I	NA	NA	NA	NA	<0.00798	NA	NA
Methoxychlor	mg/kg	39 (N)	510 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0674 K	NA	NA
PAHs																			
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	0.0035 B	<0.0023	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0015 B	<0.0023 <0.0023	NA NA	NA NA	NA NA
Acenaphthylene Anthracene	mg/kg mg/kg	230 {N} 2,300 {N}	3,100 {N} 31,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.019 0.0053	<0.0023	NA NA	NA NA	NA NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.072	<0.0023	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.074	<0.0023	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.11	<0.0023	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.062	<0.0023	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.04	< 0.0023	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.068	<0.0023	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.015	<0.0023	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.13	<0.0023	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0025	<0.0023	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.072 0.0034 B	<0.0023 0.004 B	NA NA	NA NA	NA NA
Naphthalene Phenanthrene	mg/kg mg/kg	230 {N}	3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0034 B	<0.004 B	NA NA	NA NA	NA NA
Pyrene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.034	<0.0023	NA NA	NA NA	NA NA
PCBs	9/1/9		ر، ۵۰ (۱۰)					1			1		, .		J.11	10.3020	1	1	
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		NA	NA	NA	NA	NA	NA	NA	8.3	ND	0.11	<0.030	<0.040	<0.030	NA	NA
Volatile Organics		0110 (0)	(5)											••••	101000				
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0057 J	<0.0069	<0.0066 J	<0.0079	<0.0074 J
Carbon Disulfide	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0057	0.0016 B	<0.0066	<0.0079	<0.0074
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 {C}		NA	NA	NA	NA	NA	NA	NA	0.0010 B	0.0020 B	NA	<0.0057	<0.0069	<0.0066	<0.0079	<0.0074
Tetrachloroethene	mg/kg				NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	<0.0057	<0.0069	<0.0066	<0.0079	<0.0074
Toluene	mg/kg	630 {N}	8,200 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0017 J	<0.0069	0.00071 B	<0.0079	<0.0074
Semivolatile Organics	//	40.00	200 (51)		NIA I	NI A	NIA.	NIA.	NΙΛ	N I A	NI A	0.70	N I A	NI A	l NIA I	NI A	0.00	0.00	0.70
2,4-Dinitrotoluene	mg/kg	16 (N)	200 {N} 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.78 NA	NA NA	NA NA	NA NA	NA NA	<0.20	<0.26 <0.26	<0.78
2,6-Dinitrotoluene 2-Methylnaphthalene	mg/kg mg/kg	7.8 {N} 31 {N}	410 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.030 J	NA NA	NA NA	NA NA	NA NA	<0.20 0.16 J	<0.26	<0.78 0.061 J
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.030 J	NA NA	NA NA	NA NA	NA NA	5.7 J	<0.26	0.061 J
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.060 J	NA NA	NA NA	NA NA	NA NA	0.044 J	<0.26	0.25 J
See footnotes on last page.	9/119		5,.55 (11)		,	, .	1					5.5500	, .			, .	0.0110	-5.20	5.550 0

Table 3-4Historical Soil Sampling Results, Bag Loading Area
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

1						•											1	i i	
Sample Name:		Adjusted	Adjusted	Facility-Wide	407712012	4077121224	4077122436	407736012	4077361224	407760012	4077601224	SS-09	SS-14	TR-03E	BLASB01A	BLASB01B	BLASB02A	BLASB02B	BLASB03A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2	0 - 1	1 - 2	0 - 0.5	0 - 0.16	0.04 - 0.16	0 - 0.5	2 - 4	0 - 0.5	2 - 4	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	06/04/97	03/31/98	04/02/98	06/11/02	06/20/02	06/11/02	06/20/02	06/11/02
Semivolatile Organics (contin	nued)																		
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	NA	0.20 J	NA	NA	NA	NA	13	<0.26	0.35 J
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	1.1	ND	0.11	NA	NA	39	0.010 J	2.8
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	1.3 K	ND	0.070 J	NA	NA	36	<0.26	3.4
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	1.9 K	ND	0.12 J	NA	NA	68	<0.26	6.8
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.51 K	NA	NA	NA	NA	20	<0.26	2.0
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	NA	NA	2.0 K	ND	0.080 J	NA	NA	14	<0.26	2.1
Benzoic Acid	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	ND	0.30 J	NA	NA	<0.99	0.18 B	<3.8
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		NA	NA	NA	NA	NA	NA	NA	0.57	0.050 J	0.10 J	NA	NA	<0.20 J	0.030 B	0.18 B
Carbazole	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.40	NA	NA	NA	NA	13	<0.26	0.71 J
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	1.7	ND	0.11 J	NA	NA	48	<0.26	4.4
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.20 J,K	NA	NA	NA	NA	5.9 J	<0.26	0.53 J
Dibenzofuran	mg/kg				NA	NA	NA	NA	NA NA	NA	NA	0.10	NA	NA	NA	NA	2.8	<0.26	0.24 J
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		NA	NA	NA	NA	NA	NA	NA	3.6	NA	NA	NA	NA	<0.20	<0.26	2.5 B
Fluoranthene	mg/kg	310 {N}	4,100 (N)		NA	NA NA	NA NA	NA	NA NA	NA	NA	2.9	ND	0.10 J	NA	NA	110	<0.26	9.4
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA NA	NA	NA	0.20 J	NA	NA	NA	NA	5.2 J	<0.26	0.32 J
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA NA	NA NA	NA	NA NA	NA	NA	0.52 K	NA	NA	NA	NA	23	<0.26	2.3
Naphthalene	mg/kg				NA	NA	NA NA	NA	NA NA	NA	NA	0.10 J	NA	NA	NA	NA	0.37	<0.26	0.23 J
N-Nitrosodiphenylamine	mg/kg	130 {C}	580 (C)		NA	NA	NA NA	NA	NA NA	NA	NA	0.10 J	NA	NA 0.40 L	NA	NA	<0.20	<0.26	<0.78
Phenanthrene	mg/kg	230 {N}	3,100 {N}		NA	NA NA	NA NA	NA	NA NA	NA	NA NA	2.0	ND	0.10 J	NA	NA	78	<0.26	5.4
Phenol	mg/kg	2,300 {N}	31,000 {N}		NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA 0.5.0	0.080 J	ND	NA	NA	<0.20	<0.26	<0.78
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	2.5 C	ND	0.10 J	NA	NA	85 J	<0.26	7.9 J
Inorganics	//	7,000 (1)	400 000 (1)	10.011	22.222	00.000	40.700	00.000	22.722	00.000	00.400	10.100	05.000	N10	47.400	40.700.1	00 500	40.000 1	44.000
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	36,000	32,600	40,700	29,200	32,700	33,600	39,100	12,400	35,600	NA	17,400	43,700 J	26,500	40,900 J	14,000
Antimony	mg/kg	3.13 {N}	40.88 {N}	 45.0 (C)	0.330 J	ND 5.30	0.290 J	ND	ND 3.50	ND 4.00	ND	NA 7.60	NA 4.70	NA NA	0.200 B	0.280 B	<0.590 L	0.320 B	0.440 L
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	4.60	5.30	5.40	4.40	3.50	4.90	4.40	7.60	4.70	NA	6.40 J	5.26 J	1.29 J	3.67 J	7.16 J
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	86.3	71.3	81.6	78.6	54.8	50.4	49.2	10,200 J	65.8	NA	84.9	37.2	49.9	108	3,980 0.520 B
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.60	1.60	2.00	1.40	1.50	1.50	1.60	0.700	1.60	NA	0.860				
Cadmium	mg/kg	-3 (1) VII														1.64	1.32	2.97	
Coloium		3.9 {N}	51.1 {N}	0.69 {N}	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.250	<0.130	<0.120	<0.150	11.8
Calcium	mg/kg				483 J	3,840	661 J	761 J	787 J	1,080 J	1,360	77,200	1,460	NA	17,100	<0.130 1,040 J	<0.120 1,130	<0.150 3,360 J	11.8 23,500
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	483 J 42.1	3,840 42.4	661 J 57.9	761 J 39.0	787 J 38.7	1,080 J 43.3	1,360 47.2	77,200 56.6	1,460 44.0	NA NA	17,100 33.6 L	<0.130 1,040 J 48.0 J	<0.120 1,130 39.9 L	<0.150 3,360 J 54.9 J	11.8 23,500 73.9 L
Chromium Cobalt	mg/kg mg/kg	23.5 {N}	306.6 {N}	65.3 {N} 72.3	483 J 42.1 14.8	3,840 42.4 16.9	661 J 57.9 119	761 J 39.0 11.4	787 J 38.7 14.8	1,080 J 43.3 16.6	1,360 47.2 13.9	77,200 56.6 17.2	1,460 44.0 22.5	NA NA NA	17,100 33.6 L 37.8 J	<0.130 1,040 J 48.0 J 8.52 J	<0.120 1,130 39.9 L 14.2 J	<0.150 3,360 J 54.9 J 12.0 J	11.8 23,500 73.9 L 13.6 J
Chromium Cobalt Copper	mg/kg mg/kg mg/kg	23.5 {N} 312.9 {N}	306.6 {N} 4,088 {N}	65.3 {N} 72.3 53.5 {N}	483 J 42.1 14.8 57.8	3,840 42.4 16.9 40.9	661 J 57.9 119 71.1	761 J 39.0 11.4 78.1	787 J 38.7 14.8 40.7	1,080 J 43.3 16.6 41.2	1,360 47.2 13.9 34.5	77,200 56.6 17.2 13,600	1,460 44.0 22.5 27.1	NA NA NA NA	17,100 33.6 L 37.8 J 29.7	<0.130 1,040 J 48.0 J 8.52 J 22.4 J	<0.120 1,130 39.9 L 14.2 J 29.3	<0.150 3,360 J 54.9 J 12.0 J 31.9 J	11.8 23,500 73.9 L 13.6 J 1,860
Chromium Cobalt Copper Iron	mg/kg mg/kg mg/kg mg/kg	23.5 (N) 312.9 (N) 2,346 (N)	306.6 {N} 4,088 {N} 30,660 {N}	 65.3 {N} 72.3 53.5 {N} 50,962 {N}	483 J 42.1 14.8 57.8 38,700	3,840 42.4 16.9 40.9 41,300	661 J 57.9 119 71.1 47,600	761 J 39.0 11.4 78.1 41,400	787 J 38.7 14.8 40.7 36,800	1,080 J 43.3 16.6 41.2 39,000	1,360 47.2 13.9 34.5 43,500	77,200 56.6 17.2 13,600 31,300	1,460 44.0 22.5 27.1 40,000	NA NA NA NA	17,100 33.6 L 37.8 J 29.7 45,300	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500	<0.120 1,130 39.9 L 14.2 J 29.3 41,500	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700	11.8 23,500 73.9 L 13.6 J 1,860 37,400
Chromium Cobalt Copper Iron Lead	mg/kg mg/kg mg/kg mg/kg mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400	306.6 {N} 4,088 {N} 30,660 {N} 750	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8	483 J 42.1 14.8 57.8 38,700 15.1	3,840 42.4 16.9 40.9 41,300 20.5	661 J 57.9 119 71.1 47,600 35.9	761 J 39.0 11.4 78.1 41,400 105	787 J 38.7 14.8 40.7 36,800 13.8	1,080 J 43.3 16.6 41.2 39,000 16.1	1,360 47.2 13.9 34.5 43,500 43.3	77,200 56.6 17.2 13,600 31,300 1,970	1,460 44.0 22.5 27.1 40,000 14.7	NA NA NA NA NA	17,100 33.6 L 37.8 J 29.7 45,300 51.5	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720
Chromium Cobalt Copper Iron Lead Magnesium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400	306.6 {N} 4,088 {N} 30,660 {N} 750	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8	483 J 42.1 14.8 57.8 38,700 15.1 6,220	3,840 42.4 16.9 40.9 41,300 20.5 8,150	661 J 57.9 119 71.1 47,600 35.9 7,810	761 J 39.0 11.4 78.1 41,400 105 4,850	787 J 38.7 14.8 40.7 36,800 13.8 5,820	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660	1,360 47.2 13.9 34.5 43,500 43.3 6,630	77,200 56.6 17.2 13,600 31,300 1,970 52,600	1,460 44.0 22.5 27.1 40,000 14.7 6,270	NA NA NA NA NA NA NA NA NA	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000
Chromium Cobalt Copper Iron Lead Magnesium Manganese	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N}	53.5 {N} 50,962 {N} 26.8 2,543 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286	661 J 57.9 119 71.1 47,600 35.9 7,810 736	761 J 39.0 11.4 78.1 41,400 105 4,850 183	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573	NA	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23.5 {N} 312.9 {N} 2,346 {N} 400 156.4 {N} 2.35	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA	NA	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA NA NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J 0.780 J	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J 0.470 J	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J ND	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J ND	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J ND	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J ND	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA NA	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA NA NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J 0.170 J	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B 0.380 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J 0.280 J	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4 0.310 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J 0.170 J
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N) 0.548 (N) 7.8 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N} 102.2 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J 0.780 J 77.4	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J 0.470 J 79.9	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J ND 93.1	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J ND 78.3	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J ND 71.6	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J ND 76.5	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J ND 86.6	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA NA NA NA 39.6	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J 0.170 J 71.5	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B 0.380 J 92.7 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J 0.280 J 72.6	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4 0.310 J 78.0 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J 0.170 J 35.4
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J 0.780 J	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J 0.470 J	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J ND	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J ND	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J ND	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J ND	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA NA	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA NA NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J 0.170 J	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B 0.380 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J 0.280 J	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4 0.310 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J 0.170 J
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Miscellaneous	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N) 0.548 (N) 7.8 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N} 102.2 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J 0.780 J 77.4 39.8	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J 0.470 J 79.9 42.6	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J ND 93.1 57.8	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J ND 78.3 91.4	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J ND 71.6 33.8	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J ND 76.5 38.4	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J ND 86.6 41.2	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA NA NA S9.6 5,940	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA NA NA NA NA 14.4	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J 0.170 J 71.5 79.1 J	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B 0.380 J 92.7 J 32.1 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J 0.280 J 72.6 64.0 J	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4 0.310 J 78.0 J 62.3 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J 0.170 J 35.4 2,050 J
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	mg/kg	23.5 (N) 312.9 (N) 2,346 (N) 400 156.4 (N) 2.35 156.4 (N) 39.1 (N) 39.1 (N) 0.548 (N) 7.8 (N)	306.6 {N} 4,088 {N} 30,660 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N} 102.2 {N}	65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N}	483 J 42.1 14.8 57.8 38,700 15.1 6,220 218 NA 27.6 4,870 1.40 NA 54.4 J 0.780 J 77.4	3,840 42.4 16.9 40.9 41,300 20.5 8,150 286 NA 25.4 4,760 0.800 J NA 54.3 J 0.470 J 79.9	661 J 57.9 119 71.1 47,600 35.9 7,810 736 NA 33.9 5,740 1.10 NA 58.0 J ND 93.1	761 J 39.0 11.4 78.1 41,400 105 4,850 183 NA 23.2 4,080 1.20 NA 35.6 J ND 78.3	787 J 38.7 14.8 40.7 36,800 13.8 5,820 216 NA 25.3 4,850 0.630 J NA 44.8 J ND 71.6	1,080 J 43.3 16.6 41.2 39,000 16.1 5,660 289 NA 25.6 4,880 0.960 J NA 48.1 J ND 76.5	1,360 47.2 13.9 34.5 43,500 43.3 6,630 180 NA 28.2 5,610 0.850 J NA 49.9 J ND 86.6	77,200 56.6 17.2 13,600 31,300 1,970 52,600 327 NA 57.1 2,700 0.600 NA NA NA NA NA 39.6	1,460 44.0 22.5 27.1 40,000 14.7 6,270 573 NA 23.8 4,200 NA	NA N	17,100 33.6 L 37.8 J 29.7 45,300 51.5 12,100 1,360 0.0400 J 12.4 1,710 <1.14 <1.14 37.4 J 0.170 J 71.5	<0.130 1,040 J 48.0 J 8.52 J 22.4 J 51,500 10.0 4,150 J 71.0 J 0.0800 L 24.9 3,240 <1.37 <1.37 28.9 B 0.380 J 92.7 J	<0.120 1,130 39.9 L 14.2 J 29.3 41,500 16.0 8,490 255 0.0500 J 25.9 4,520 <1.20 <1.20 31.2 J 0.280 J 72.6	<0.150 3,360 J 54.9 J 12.0 J 31.9 J 46,700 11.6 30,800 J 429 J 0.0400 L 46.5 9,590 <1.57 <1.57 51.4 0.310 J 78.0 J	11.8 23,500 73.9 L 13.6 J 1,860 37,400 1,720 13,000 290 0.260 26.6 1,330 <1.15 0.680 J 40.4 J 0.170 J 35.4

							ı ı	New Kivei Oili	t, Radford Arn	iy Ammunido	i Fiant, Naulu	iu, viigiilia							
Sample Name:		Adjusted	Adjusted	Facility-Wide	BLASB03B	BLASS01	BLASS02	BLASS03	BLASS04	BLASS05	BLASS06	BLASS07	BLASS08	BLASS09	BLASS10	BLASS11	BLATR01	BLATR02	BLATR03
Sample Depth (ft):		Soil RBC	Soil RBC	Background	2 - 4	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/20/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/20/02	06/20/02	06/20/02
Asbesos																			
Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives							I.	I		Į.	I.							I.	
1,3,5-Trinitrobenzene	mg/kg	230 (N)	3,100 {N}		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.07 J	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA
1,3-Dinitrobenzene	mg/kg	0.78 {N}	10 (N)		<0.1	<0.1	0.05 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA
2,4,6-Trinitrotoluene	mg/kg	21 {C}	95 (C)		<0.2	<0.2	<0.2	0.06 J	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA
2,4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		<0.2	<0.2	0.26	2.99	0.08 J	0.08 J	<0.2	<0.2	0.25	0.04 K	<0.2	<0.2	NA	NA	NA
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 {N}		<0.2	<0.2	<0.2	0.32	<0.2	<0.2	0.07 J	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA
4-Amino-2,6-Dinitrotoluene	mg/kg				<0.2	<0.2	<0.2	0.07 K	<0.2	<0.2	<0.2	0.06 K	0.04 K	<0.2	<0.2	<0.2	NA	NA	NA
m-Nitrotoluene	mg/kg				<0.4	<0.4	<0.4	<0.4	2.86	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	NA	NA	NA
Nitroglycerine	mg/kg	0.78 {N}	10 {N}		<0.39	< 0.34	<0.31	<0.72	<0.39	<0.31	<0.72	<0.69	<0.7	< 0.37	<0.36	0.21 J	NA	NA	NA
Herbicides																			
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA
Organochlorine Pesticides																			
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00574 J	NA	NA	NA	NA
4,4'-DDE	mg/kg	1.9 (C)	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Aldrin	mg/kg	0.038 {C}	0.17 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Alpha-Chlordane	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809 J	NA	NA	NA	NA
Endosulfan I	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Endosulfan II	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Endrin	mg/kg	2.4 {N}	31 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Endrin Aldehyde	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809 L	NA	NA	NA	NA
Endrin Ketone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Gamma-Chlordane	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Heptachlor Epoxide	mg/kg	0.07 {C}	0.31 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
Methoxychlor	mg/kg	39 {N}	510 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00809	NA	NA	NA	NA
PAHs	n	04 (N)	440 (N)		NIA	0.040	0 0000 D		1 110	N10	N. A.		NIA	NIA	. N.A	NIA	. NIA	NIA.	
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA	0.013	0.0022 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 {N}	6,100 (N)		NA	0.0017 B	<0.0018	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA
Acenaphthylene Anthracene	mg/kg	230 {N} 2,300 {N}	3,100 (N)		NA NA	0.0022 0.0035	0.00076 J 0.0013 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene	mg/kg mg/kg	0.22 {C}	31,000 {N} 3.9 {C}		NA NA	0.0035	0.0013 3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	mg/kg	0.22 (C) 0.022 (C)	0.39 (C)		NA NA	0.029	0.010	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene		0.022 {C}	3.9 {C}		NA NA	0.059	0.017	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg mg/kg	0.22 {C}	3.9 (C)		NA NA	0.039	0.033	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA NA	0.024	0.0086	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 {C}	390 (C)		NA NA	0.010	0.000	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene	mg/kg				NA	0.0063	0.0039	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA
Fluoranthene	mg/kg	310 (N)	4,100 {N}		NA	0.062	0.047	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA.	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N)		NA	0.0019 J	0.0011 J	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	0.026	0.02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg				NA	0.012	0.0019 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	0.033	0.019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	0.045	0.027	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs																			<u> </u>
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		NA	3.2	0.060	NA	NA	NA	NA	NA	NA	NA	<0.040	NA	0.040	5.7	<0.030
Volatile Organics																			
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.011 J	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		< 0.0059	<0.0058 J	<0.0067 J	<0.0066 J	NA	<0.0088 J	<0.0066 J	0.023 B	NA	<0.0055 J	<0.0061 J	<0.0068 J	NA	NA	NA
Carbon Disulfide	mg/kg				0.00043 B	<0.0058	<0.0067	<0.0066	NA	<0.0088	<0.0066	<0.0070	NA	<0.0055	<0.0061	<0.0068	NA	NA	NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.057 J	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		<0.0059	<0.0058	<0.0067	<0.0066	NA	<0.0088	<0.0066	<0.0070	NA	<0.0055	<0.0061	<0.0068	NA	NA	NA
Tetrachloroethene	mg/kg				< 0.0059	<0.0058	<0.0067	<0.0066	NA	<0.0088	0.00090 J	0.00092 J	NA	<0.0055	<0.0061	<0.0068	NA	NA	NA
Toluene	mg/kg	630 (N)	8,200 {N}		< 0.0059	<0.0058	<0.0067	<0.0066	NA	0.0041 J	0.0059 J	0.0070	NA	<0.0055	<0.0061	<0.0068	NA	NA	NA
Semivolatile Organics																			
2,4-Dinitrotoluene	mg/kg	16 (N)	200 (N)		<0.22	NA	NA	120	NA	R	<0.20 J	<0.39	NA	<0.21	<0.21	<0.21	NA	NA	NA
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 {N}		<0.22	NA	NA	6.3 J	NA	R	<0.20 J	<0.39	NA	<0.21	<0.21	<0.21	NA	NA	NA
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		<0.22	NA	NA	<0.21	NA	0.048 J	<0.20 J	<0.39	NA	<0.21	0.015 J	<0.21	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		<0.22	NA	NA	<0.21	NA	0.067 J	0.015 J	0.22 J	NA	0.040 J	0.086 J	0.067 J	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<0.22	NA	NA	<0.21	NA	0.065 J	<0.20 J	<0.39	NA	<0.21	0.042 J	<0.21	NA	NA	NA
See footnotes on last page.																			

Historical Soil Sampling Results, Bag Loading Area New River Unit, Radford Army Ammunition Plant, Radford, Virginia

,				,		•			i, riadiora / iiri	iy / ariiiridiiidor	n Plant, Radio	ıa, viigiilia	ı			•	•	1	
Sample Name:		Adjusted	Adjusted	Facility-Wide	BLASB03B	BLASS01	BLASS02	BLASS03	BLASS04	BLASS05	BLASS06	BLASS07	BLASS08	BLASS09	BLASS10	BLASS11	BLATR01	BLATR02	BLATR03
Sample Depth (ft):		Soil RBC	Soil RBC	Background	2 - 4	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/20/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/11/02	06/20/02	06/20/02	06/20/02
Semivolatile Organics (conti	nued)																		
Anthracene	mg/kg	2,300 {N}	31,000 {N}		< 0.22	NA	NA	0.022 J	NA	0.099 J	0.039 J	0.41	NA	0.11 J	0.21 J	0.14 J	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.022 J	NA	NA	0.15 J	NA	0.72	0.28 J	1.8	NA	0.73	1.1	0.74	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		<0.22	NA	NA	0.17 J	NA	0.84	0.30 J	1.4	NA	0.69	1.0	0.70	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.024 J	NA	NA	0.36 J	NA	1.6	0.51 J	2.6	NA	1.2	1.6	1.2	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				<0.22	NA	NA	0.12 J	NA	0.55	0.18 J	0.97	NA	0.61	0.79	0.55	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		0.0080 J	NA	NA	0.10 J	NA	0.47	0.13 J	0.60	NA	0.33	0.53	0.25	NA	NA	NA
Benzoic Acid	mg/kg				0.16 B	NA	NA	<1.0	NA	<0.86	<1.0 J	<1.9	NA	<1.0	<1.0	<1.0	NA	NA	NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 {C}	200 (C)		0.037 B	NA	NA	<0.21	NA	0.21 B	0.17 B	0.30 B	NA	<0.21	0.083 B	0.10 B	NA	NA	NA
Carbazole	mg/kg				<0.22	NA	NA	0.045 J	NA	0.13 J	0.057 J	0.35 J	NA	0.14 J	0.25	0.18 J	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		0.015 J	NA	NA	0.21	NA	0.89	0.31 J	1.4	NA	0.88	1.2	0.89	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg				<0.22	NA	NA	<0.21 J	NA	0.18	0.044 J	0.19 J	NA	0.14 J	0.18 J	0.13 J	NA	NA	NA
Dibenzofuran	mg/kg				<0.22	NA	NA	<0.21	NA	0.074 J	0.016 J	0.084 J	NA	0.019 J	0.055 J	0.025 J	NA	NA	NA
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		<0.22	NA	NA	120 B	NA	0.58 B	<0.20 J	<0.39	NA	0.36 B	0.061 B	<0.21	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		0.033 J	NA	NA	0.37	NA	1.5	0.69 J	3.9	NA	1.7	2.9	2.0	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		<0.22	NA	NA	<0.21	NA	0.075 J	0.020 J	0.21 J	NA	0.032 J	0.11 J	0.069 J	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		<0.22	NA	NA	0.13 J	NA	0.60	0.22 J	1.1	NA	0.68	0.91	0.63	NA	NA	NA
Naphthalene	mg/kg				<0.22	NA	NA	<0.21	NA	0.072 J	0.013 J	0.019 J	NA	<0.21	0.036 J	<0.21	NA	NA	NA
N-Nitrosodiphenylamine	mg/kg	130 {C}	580 (C)		<0.22	NA	NA	8.3	NA	R	<0.20 J	<0.39	NA	<0.21	<0.21	<0.21	NA	NA	NA
Phenanthrene	mg/kg	230 {N}	3,100 {N}		0.017 J	NA	NA	0.19 J	NA	0.62	0.30 J	2.6	NA	0.73	1.7	1.2	NA	NA	NA
Phenol	mg/kg	2,300 {N}	31,000 {N}		<0.22	NA	NA	<0.21	NA	R	<0.20 J	<0.39	NA	<0.21	<0.21	<0.21	NA	NA	NA NA
Pyrene	mg/kg	230 (N)	3,100 {N}		0.026 J	NA	NA	0.42	NA	1.6	0.53 J	3.1 J	NA	1.2	2.1	1.5	NA	NA	NA
Inorganics	,	7,000,410	100 000 (11)	10.044		10.000		10.500					01.700						
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	30,500 J	18,000	5,530	13,500	NA	26,600	22,200	20,300	21,700	29,700	28,600	24,100	NA	NA	NA
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.650 L	0.230 B	0.200 B	0.970 L	NA	0.220 B	0.250 B	0.370 B	1.62 L	0.230 B	0.230 B	0.230 B	NA	NA	NA
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	5.66 J	7.48 J	<0.510	7.05 J	NA	14.8 J	7.94 J	12.5 J	4.94 J	7.97 J	5.50 J	5.15 J	NA	NA	NA
Barium	mg/kg	1,564 {N}	20,440 {N}	209 {N}	89.9	155	49.2	3,120	NA	57.9	48.3	45.4	267	331	69.6	98.6	NA	NA	NA
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.36	0.950	0.360 B	0.500 B	NA	1.24	1.18	1.37	1.00	0.370 B	1.41	1.49	NA	NA	NA
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.130	0.350	1.29	12.2	NA	0.530	0.100 J	0.170	12.1	1.12	0.350	1.50	NA	NA	NA
Calcium	mg/kg				1,360 J	10,700	64,700	71,400	NA	6,240	1,800	642	43,600	15,800	1,370	1,890	NA	NA	NA
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	31.1 J	33.5 L	11.2 L	40.2 L	NA	62.6 L	43.4 L	37.3 L	30.2 L	51.4 L	29.3 L	58.9 L	NA	NA	NA
Cobalt	mg/kg			72.3	17.8 J	20.5 J	4.43 J	8.54 J	NA	16.6 J	18.4 J	15.8 J	27.1 J	4.15 J	24.7 J	149 J	NA	NA	NA
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	34.0 J	26.0	244	2,270	NA	490	503	691	1,450	962	51.6	53.4	NA	NA	NA
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	35,000	32,300	8,500	19,500	NA	42,000	37,500	30,500	23,900	33,500	35,800	44,700	NA	NA	NA
Lead	mg/kg	400	750	26.8	19.0	61.1	79.9	3,850	NA	81.5	28.8	34.1	8,790	255	95.6	143	NA	NA	NA
Magnesium	mg/kg				3,840 J	8,610	40,000	48,100	NA	8,500	6,140	6,000	20,300	11,000	5,710	5,230	NA	NA	NA
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	435 J	628	140	153	NA	332	399	292	508	88.0	350	3,080	NA	NA	NA
Mercury	mg/kg	2.35	30.66	0.13	0.0500 L	0.0600	<0.0500	5.24	NA	0.0300 J	0.0400 J	0.0200 J	0.0400 J	2.16	0.190	0.140	NA	NA	NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	20.1	12.9	5.99	25.1	NA	25.5	23.2	22.7	20.3	15.2	25.3	27.0	NA	NA	NA
Potassium	mg/kg				2,870	1,910	1,490	1,380	NA	3,290	3,940	3,100	3,580	752	4,100	2,680	NA	NA	NA
Selenium	mg/kg	39.1 {N}	511 {N}		<1.31	0.410 J	<1.03	<1.21	NA	<1.03	<1.20	0.390 J	<1.17	<1.23	<1.21	<1.23	NA	NA	NA
Silver	mg/kg	39.1 {N}	511 {N}		<1.31	<1.16	<1.03	0.770 J	NA	<1.03	<1.20	<1.16	<1.17	0.620 J	<1.21	<1.23	NA	NA	NA
Sodium	mg/kg				26.0 B	38.8 J	74.4 J	118 J	NA	31.9 J	23.8 B	33.2 J	70.5 J	38.5 J	28.4 B	25.7 B	NA	NA	NA
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.260 J	0.190 J	0.0400 J	0.110 J	NA	0.270 J	0.250 J	0.260 J	0.190 J	0.180 J	0.350 J	0.280 J	NA	NA	NA
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	59.1 J	58.3	14.4	29.6	NA	65.1	66.4	52.1	41.7	58.4	62.2	77.4	NA	NA	NA
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	49.2 J	139 J	976 J	2,140 J	NA	1,090 J	53.2 J	75.6 J	2,450 J	185 J	94.1 J	164 J	NA	NA	NA
Miscellaneous																			
рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- RBC Risk Based Concentration.
- {C} Carcinogen.
- {N} Noncarcinogen.
- B (Inorganics) Constituent concentration quanitified as estimated.
- B (Organics) Constituent was detected in the associated method blank.
 - J Constituent concentration quanitified as estimated.
 K Estimated concentration bias high.
 - L Estimated concentration bias low.
 - R Constituent concentration rejected.
 - NA Not Analyzed.
- ND Not Detected (no detection limit given).
- 24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

 10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).
- 3,980 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Historical Sediment Sampling Results, Bag Loading Area New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Sample Depth (ft): Date Collected: Ur Explosives Pentaerythritol Tetranitrate mg Herbicides None Detected - Organochlorine Pesticides 4,4'-DDD mg 4,4'-DDE mg A,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Endrin mg Endrin mg Heptachlor Epoxide mg Methoxychlor mg Acenaphthylene mg Acenaphthylene mg Benzo(a)aphthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Pyrene mg PCBs None Detected volatile Organics Acetone mg Semivolatile Organics	/kg	Adjusted Soil RBC (Residential) 2.7 {C} 1.9 {C} 1.9 {C} 0.36 {C} 0.04 {C} 2.4 {N} 0.07 {C} 39 {N} 31 {N} 230 {N} 2,300 {N} 0.22 {C} 0.22 {C} 0.22 {C} 1.22 {C} 1.22 {C} 1.23 {N} 0.22 {C} 1.23 {N} 0.22 {C} 0.22	12 {C} 8.4 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 510 {N} 410 {N} 3,100 {N} 3,9 {C} 0.39 {C} 3.9 {C} 4,100 {N} 3,9 {C} 2,000 {N} 3,100 {N} 3,100 {N}	Facility-Wide Background Point	BLASD01 0 - 0.5 06/18/02 0.16 J 0.00092 0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00044 0.00049 0.0054 0.0054 0.0065 0.0028 0.0065 0.0028 0.0065 0.0019 0.0089 0.0015 J 0.0058	0.00064 J 0.00058 B 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00085 0.00099 J 0.0074 0.0098 0.0017 0.0083 0.0051 0.011 0.0028 0.015 0.0098 J 0.0094 B	BLASD04 0 - 0.5 06/24/02 <0.47 0.00073 J 0.00182 B 0.00077 B 0.00029 J 0.00029 J 0.00094 K <0.00106 <0.0017 G 0.0017 J 0.013 0.012 0.0019 0.0071 0.013 0.0012 0.0019 0.0019 0.0011 0.0011 0.0071 0.013 0.0012 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.00010	0.00059 J 0.00059 J 0.00102 B 0.00062 B 0.00062 B 0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.0005 0.0013 D 0.0013 D 0.0013 D 0.0013 D 0.0013 D 0.0025 0.0039 0.002 B 0.002 B 0.002 B
Date Collected: Ur Explosives Pentaerythritol Tetranitrate mg Herbicides None Detected Organochlorine Pesticides 4,4'-DDD mg 4,4'-DDT mg 4,4'-DDT mg Hopha-Chlordane mg Beta-BHC mg Endrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Heptachlor Epoxide mg Heptachlor Epoxide mg Methoxychlor mg PAHs 2-Methylnaphthalene mg Anthracene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Phenanthracene mg Phenanthrene mg Phenanthrene mg Roppene mg Naphthalene mg Phenanthrene mg Phenanthrene mg Phenanthrene mg Pyrene mg PCBS None Detected Volatile Organics Acetone mg Toluene mg	/kg	2.7 (C) 1.9 (C) 1.9 (C) 1.9 (C) 1.9 (C) 1.9 (C) 1.9 (C) 2.4 (N) 0.07 (C) 39 (N) 2.300 (N) 2.300 (N) 0.22 (C) 0.022 (C) 0.22 (C) 1.9 (C) 2.9 (C) 2.9 (C) 2.9 (C) 3.10 (N) 3.20 (N)	(Industrial) 12 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3.9 {C} 4,100 {N}	Point	0.16 J 0.00092 0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00094 0.00442 0.0044 0.00099 J -0.0054 0.0049 0.0088 0.0068 0.0068 0.0069 0.0015 J 0.0089 0.00052 0.0007 B	06/18/02 <0.37 0.00064 J 0.00058 B <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 0.00082 0.00035 J <0.00082 <0.00082 0.00098 0.00091 0.0074 0.0098 0.017 0.0083 0.017 0.0083 0.011 0.0011 0.0028 0.015 0.00095 J 0.0098 0.004 B	06/24/02 <0.47 0.00073 J 0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00094 K <0.00106 <0.00106 0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0019 0.0012 J 0.0091 0.00081 0.0001 B	06/24/02 <0.44 0.00059 J 0.00102 B 0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00059 0.0013 B <0.0025 0.005 0.0013 D
Pentaerythritol Tetranitrate mg Herbicides None Detected Organochlorine Pesticides 4,4'-DDD mg 4,4'-DDE mg 4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg Acenaphthylene mg Acenaphthylene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(a)h)nphathracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthe	- kg	2.7 (C) 1.9 (C) 1.9 (C) 1.9 (C) 1.9 (C) 0.04 (C) 2.4 (N) 0.07 (C) 39 (N) 230 (N) 2,300 (N) 0.22 (C) 0.022 (C) 2.2 (C) 22 (C) 310 (N) 310 (N) 0.22 (C) 160 (N) 230 (N)	12 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 3,9 {C} 0.39 {C} 4,100 {N} 3,9 {C} 4,100 {N} 3,9 {C} 2,000 {N} 3,9 {C} 4,100 {N} 3,9 {C}		0.16 J 0.00092 0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 0.00044 0.00442 0.0044 0.00099 J <0.0024 0.0049 0.0088 0.0068 0.0068 0.0068 0.0019 J 0.0089 0.0015 J 0.0085 0.00052 0.0007 B	0.00064 J 0.00058 B <0.00082 <0.00082 <0.00082 <0.00085 <0.00085 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 0.0064 <0.0026 0.0099 J 0.0074 0.0098 0.017 0.0083 0.0051 0.0011 0.0028 0.015 0.0095 J 0.0098 0.004 B	0.00073 J 0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 -0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.0021 B	0.00059 J 0.00102 B 0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00031 B <0.0025 <0.0025 <0.0025 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0039 <0.0039 <0.0039 <0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
Pentaerythritol Tetranitrate mg Herbicides None Detected Organochlorine Pesticides 4,4'-DDD mg 4,4'-DDE mg 4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg Acenaphthylene mg Acenaphthylene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(a)h)nphathracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthe	- kg	2.7 (C) 1.9 (C) 1.9 (C) 1.9 (C) 1.9 (C) 0.04 (C) 2.4 (N) 0.07 (C) 39 (N) 230 (N) 2,300 (N) 0.22 (C) 0.022 (C) 2.2 (C) 22 (C) 310 (N) 310 (N) 0.22 (C) 160 (N) 230 (N)	12 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 3,9 {C} 0.39 {C} 4,100 {N} 3,9 {C} 4,100 {N} 3,9 {C} 2,000 {N} 3,9 {C} 4,100 {N} 3,9 {C}		0.00092 0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00094 0.00442 0.0044 0.0099 J <0.0024 0.0054 0.0068 0.0068 0.0068 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0052 0.0052	0.00064 J 0.00058 B <0.00082 <0.00082 <0.00082 <0.00085 <0.00085 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 0.0064 <0.0026 0.0099 J 0.0074 0.0098 0.017 0.0083 0.0051 0.0011 0.0028 0.015 0.0095 J 0.0098 0.004 B	0.00073 J 0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 -0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.0021 B	0.00059 J 0.00102 B 0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00031 B <0.0025 <0.0025 <0.0025 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0039 <0.0039 <0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
Herbicides None Detected Organochlorine Pesticides 4,4'-DDD A,4'-DDE Mg 4,4'-DDT Alpha-Chlordane Beta-BHC Dieldrin Endrin Gamma-Chlordane Heptachlor Epoxide Methoxychlor Methoxychlor Methoxychlor Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(a)anthracene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(a)anthracene Benzo(b,fluoranthene Benzo(a)anthracene Benzo(b,fluoranthene Benzo(a)anthracene Benzo(b,fluoranthene Benzo(a,h)anthracene Benzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene Mg Phenanthrene Mg PCBs None Detected Volatile Organics Acetone Toluene mg Toluene mg Toluene mg Toluene mg	- kg	2.7 (C) 1.9 (C	12 {C} 8.4 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3.9 {C}		0.00092 0.00086 B <0.00079 0.00028 J <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00094 0.00442 0.0044 0.0099 J <0.0054 0.0049 0.0098 0.0068 0.0068 0.0065 0.0019 J 0.0089 0.0015 J 0.0085 0.00052 0.00052	0.00064 J 0.00058 B <0.00082 <0.00082 <0.00082 <0.00082 <0.00085 J <0.00082 <0.00082 <0.00082 <0.00082 0.00095 0.00095 0.00094 0.00064 0.00064 0.00096 0.00099 J 0.0074 0.0098 0.017 0.0083 0.011 0.0028 0.015 0.00095 J 0.00095 J 0.00098 0.004 B	0.00073 J 0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00029 J 0.00041 J 0.00106 0.00116 0.0018 B 0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.00018 B	0.00059 J 0.00102 B 0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00095 0.0013 B <0.0025 0.005 0.005 0.005 0.0013 0.0031 0.0031 0.0078 0.0073 0.0073 0.0073 0.0078 0.0025 0.0025
Organochlorine Pesticides 4,4'-DDD mg 4,4'-DDE mg 4,4'-DDT mg 4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Endrin mg Endrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg PAHs 2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Phenanthracene mg Renzo(a)aphracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Robert mg	/kg	2.7 (C) 1.9 (C	12 {C} 8.4 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3.9 {C}		0.00092 0.00086 B <0.00079 0.00028 J <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00094 0.00442 0.0044 0.0099 J <0.0054 0.0049 0.0098 0.0068 0.0068 0.0065 0.0019 J 0.0089 0.0015 J 0.0085 0.00052 0.00052	0.00064 J 0.00058 B <0.00082 <0.00082 <0.00082 <0.00082 <0.00085 J <0.00082 <0.00082 <0.00082 <0.00082 0.00095 0.00095 0.00094 0.00064 0.00064 0.00096 0.00099 J 0.0074 0.0098 0.017 0.0083 0.011 0.0028 0.015 0.00095 J 0.00095 J 0.00098 0.004 B	0.00073 J 0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00029 J 0.00041 J 0.00106 0.00116 0.0018 B 0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.00018 B	0.00059 J 0.00102 B 0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00095 0.0013 B <0.0025 0.005 0.005 0.005 0.0013 0.0031 0.0031 0.0078 0.0073 0.0073 0.0073 0.0078 0.0025 0.0025
4,4-DDD mg 4,4'-DDE mg 4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Endrin mg Methoxychlor mg Heptachlor Epoxide mg Methoxychlor mg PAHs 2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected - Volatile Organics Acetone mg	/kg	1.9 (C) 1.9 (C	8.4 {C} 8.4 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 3,9 {C} 0.39 {C} 3.9 {C} 39 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3,9 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.30		0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 0.00044 0.0044 0.00094 0.0044 0.00094 0.0044 0.0098 0.0088 0.0068 0.0068 0.0069 0.0019 J 0.0089 0.0015 J 0.0052 0.0007 B	0.00058 B <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00085 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 0.00064 <0.0026 0.00099 J 0.0074 0.0098 0.017 0.0083 0.011 0.0011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0019 0.0012 J 0.0019 0.0012 J 0.0081 0.0021 B	0.00102 B 0.00062 B 0.00025 J 0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 0.0013 B <0.0025 0.0025 0.0025 0.0031 0.0031 0.0031 0.0073 0.0013 J 0.0078 <0.0025 0.0025 0.0099
4,4'-DDE mg 4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Endrin mg Heptachlor Epoxide mg Methoxychlor mg Acenaphthylene mg Acenaphthylene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(a)hi)perylene mg Benzo(a)hi)perylene mg Benzo(a)hi)perylene mg Benzo(a)hi)perylene mg Benzo(a,h,a)nthracene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Prene mg	/kg	1.9 (C) 1.9 (C	8.4 {C} 8.4 {C} 8.4 {C} 8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 3,9 {C} 0.39 {C} 3.9 {C} 39 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3,9 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.39 {C} 0.30		0.00086 B <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 0.00044 0.0044 0.00094 0.0044 0.00094 0.0044 0.0098 0.0088 0.0068 0.0068 0.0069 0.0019 J 0.0089 0.0015 J 0.0052 0.0007 B	0.00058 B <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00085 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 0.00064 <0.0026 0.00099 J 0.0074 0.0098 0.017 0.0083 0.011 0.0011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.00182 B 0.00077 B 0.00038 J 0.00029 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0019 0.0012 J 0.0019 0.0012 J 0.0081 0.0021 B	0.00102 B 0.00062 B 0.00025 J 0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 0.0013 B <0.0025 0.0025 0.0025 0.0031 0.0031 0.0031 0.0073 0.0013 J 0.0078 <0.0025 0.0025 0.0099
4,4'-DDT mg Alpha-Chlordane mg Beta-BHC mg Dieldrin mg Endrin mg Endrin mg Endrin mg Endrin mg Endrin mg Heptachlor Epoxide mg Methoxychlor mg PAHS 2-Methylnaphthalene mg Acenaphthylene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Enzo(a)hi)perylene mg Diehzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Phenanthrene mg Phenanthrene mg Pyrene mg PCBs None Detected mg Toluene mg	/kg	1.9 (C)	8.4 {C} 1.6 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 3,100 {N} 3,100 {N} 3,9 {C} 39 {C} 39 {C} 4,100 {N} 3,9 {C} 3,9 {C} 4,100 {N} 3,9 {C} 3,100 {N}		 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.00079 <0.0004 <0.00044 <0.00442 <0.0044 <0.0099 J <0.0024 <0.0054 <0.0049 <0.008 <0.008 <0.0028 <0.0095 <0.0019 J <0.0089 <0.0015 J <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0037 <0.00052 <0.00052 <0.00052 <0.00052 <0.00052 <0.00053 	 <0.00082 <0.00091 <0.0026 <0.0099 J <0.0017 <0.0008 <0.0017 <0.0008 <0.0011 <0.0028 <0.015 <0.00095 J <0.00098 <0.004 B 	0.00077 B 0.00038 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 <0.00106 0.0017 J 0.013 0.012 0.0071 0.0071 0.0013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.0021 B	0.00062 B 0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00033 B <0.0025 <0.0025 <0.0025 <0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0038 0.0078 0.0025
Alpha-Chlordane Beta-BHC Dieldrin Endrin Gamma-Chlordane Heptachlor Epoxide Methoxychlor PAHS 2-Methylnaphthalene Acenaphthylene Methoxychlor Methoxychlor Methoxychlor Mother Methylnaphthalene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Methylnaphthalene Mother	/kg	0.36 {C} 0.04 {C} 2.4 {N} 	1.6 {C} 0.18 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3,9 {C} 0.39 {C} 0.39 {C} 3,9 {C} 0.39 {C} 0.30 {		 <0.00079 <0.00028 J <0.00079 <0.00079 <0.00079 <0.00094 <0.00442 <0.0044 <0.0024 <0.0054 <0.0054 <0.0058 <0.0028 <0.0028 <0.0019 J <0.0089 <0.0099 <0.0019 J <0.0019 J <0.0015 J <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0054 	 <0.00082 <0.00082 <0.00083 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.0064 <0.0026 <0.0099 J <0.0074 <0.0098 <0.017 <0.0083 <0.0051 <0.011 <0.0028 <0.015 <0.0098 J <0.0095 J <0.0095 J <0.0098 J <0.0098 J <0.0099 J <0.0098 J <0.0099 J <0.0098 J <0.0099 J <0.0098 J <0.0094 J 	0.00038 J 0.00029 J 0.00094 K <0.00106 0.00041 J <0.00106 <0.0018 B <0.0027 0.0017 J 0.013 0.012 0.0071 0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0012 J 0.0012 J 0.0021 B	0.00025 J <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00025 <0.0025 <0.0025 0.0059 0.005 0.013 0.0031 0.0031 0.0073 0.0073 0.0073 0.0078 <0.0025
Beta-BHC mg Dieldrin mg Endrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg PAHS 22-Methylnaphthalene mg A-cenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(a)fluoranthene mg Benzo(b)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected - Volatile Organics Acetone mg Toluene mg	/kg	0.36 {C} 0.04 {C} 2.4 {N} 0.07 {C} 39 {N} 230 {N} 2,300 {N} 0.22 {C} 0.22 {C} 0.22 {C} 2.2 {C} 2.2 {C} 310 {N} 310 {N} 310 {N} 2,300 {N} 0.22 {C} 0.22 {C} 0.22 {C} 0.22 {C} 0.22 {C} 0.22 {C} 0.30 {N}	1.6 {C} 0.18 {C} 0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 0.39 {C} 4,100 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3.9 {C}		0.00028 J <0.00079 <0.00079 <0.00079 0.00094 0.00442 0.0044 0.0099 J <0.0054 0.0049 0.0088 0.0068 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00099 <0.0074 <0.0099 <0.017 <0.0083 <0.017 <0.0083 <0.0011 <0.0028 <0.011 <0.0028 <0.0095 <0.0095 <0.0098 <0.004 <0.00082 	0.00029 J 0.00094 K <0.00106 <0.00041 J <0.00106 <0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0071 0.0071 0.0013 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.0003 <0.0025 <0.0025 <0.0025 <0.0031 <0.0031 <0.0031 <0.0031 <0.0033 <0.0073 <0.0073 <0.0073 <0.0078 <0.0025 <0.0025 <0.0031 <0.0033 <0.0073 <0.0078 <0.0025 <0.0039 <0.002 B
Dieldrin	/kg	0.04 {C} 2.4 {N} 0.07 {C} 39 {N} 31 {N} 230 {N} 2,300 {N} 0.22 {C} 0.22 {C} 2.2 {C} 2.2 {C} 0.022 {C} 0.022 {C} 0.022 {C} 10 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	0.18 {C} 31 {N} 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 39 {C} 0.39 {C} 39 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3,9 {C} 0.39 {C}		 <0.00079 <0.00079 <0.00079 <0.00079 <0.00094 <0.0044 <0.0099 J <0.0024 <0.0054 <0.0049 <0.0049 <0.0068 <0.0068 <0.0019 J <0.0089 <0.0019 J <0.0089 <0.0015 J <0.0052 <0.0052 <0.0037 B 	 <0.00082 <0.00035 J <0.00082 <0.00082 <0.00082 <0.00064 <0.0026 <0.0099 J <0.0074 <0.0098 <0.017 <0.0083 <0.0011 <0.0028 <0.015 <0.0095 J <0.0098 J <0.0095 J <0.0098 J <0.0098 J <0.0099 J <0.0098 J <0.0098 J <0.0098 J <0.0098 J <0.004 B 	0.00094 K <0.00106 0.00041 J <0.00106 <0.00108 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.0021 B	 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00031 <0.0025 <0.0025 <0.0005 <0.0031 <0.0031 <0.00031 <0.0073 <0.0073 <0.0073 <0.0025 <0.0025 <0.0025 <0.0025 <0.0031 <0.0078 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0039 <0.002 B
Endrin mg Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg PAHs 2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Maphthalene mg Phenanthrene mg PCBs None Detected - Volatile Organics Acetone mg Toluene mg	/kg	2.4 (N) 0.07 {C} 39 {N} 230 {N} 230 {N} 0.22 {C} 0.022 {C} 2.2 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	31 (N) 0.31 {C} 510 {N} 410 {N} 3,100 {N} 31,000 {N} 39 {C} 0.39 {C} 39 {C} 0.39 {C} 4,100 {N} 4,100 {N} 4,100 {N} 3,9 {C} 2,000 {N} 3,100 {N}		 <0.00079 <0.00079 <0.00094 <0.00442 <0.0044 <0.0039 <0.0024 <0.0054 <0.0049 <0.008 <0.0068 <0.0068 <0.0098 <0.0019 <0.0089 <0.0019 <0.0089 <0.0015 <0.0052 <0.0037 <0.0052 <0.0037 <0.00052 <0.00037 <0.00052 <0.00037 <0.00052 <0.00037 <0.00009 <0.00009 <0.00052 <0.00037 <0.00052 <0.00037 <0.00009 <0.00009 <0.00052 <0.00037 <0.00009 <0.00009 <0.00009 <0.00009 <0.00009 <0.00	0.00035 J <0.00082 <0.00082 <0.00082 <0.00082 0.0064 <0.0026 0.0099 J 0.0074 0.0098 0.017 0.0083 0.011 0.0028 0.015 0.0095 J 0.0095 J 0.0095 J 0.0095 J 0.0098 0.004 B	 <0.00106 0.00041 J <0.00106 <0.00106 <0.0017 J <0.013 <0.012 <0.019 <0.0071 <0.013 <0.012 <0.019 <0.0071 <0.013 <0.0021 J <0.019 <0.0012 J <0.0012 J <0.0012 J <0.0012 J <0.00081 <0.00021 B 	 <0.00099 <0.00099 <0.00099 <0.00099 <0.0025 <0.0025 <0.0025 <0.0031 <0.0031 <0.0031 <0.0031 <0.0031 <0.0073 <0.0073 <0.0025 <0.0025 <0.0025 <0.0031 <0.0073 <0.0078 <0.0025 <0.0025 <0.0039 <0.002 B
Gamma-Chlordane mg Heptachlor Epoxide mg Methoxychlor mg PAHS 2-Methylnaphthalene mg Acenaphthylene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone mg Toluene mg	/kg	0.07 {C} 39 {N} 31 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 22 {C} 22 {C} 310 {N} 310 {N} 310 {N} 310 {N} 310 {N} 310 {N} 310 {N}			 <0.00079 0.00094 0.00442 0.0044 0.00099 J <0.0054 0.0054 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0089 0.0015 J 0.0052 0.0052 0.0052 0.0052 0.0053 B 	 <0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.00099 <0.00099 <0.0074 <0.0098 <0.017 <0.0083 <0.0051 <0.0011 <0.0028 <0.015 <0.0095 <0.0095 <0.0098 <0.004 <0.004 	0.00041 J <0.00106 <0.00106 0.0018 B <0.0027 0.0017 J 0.013 0.012 0.0071 0.0071 0.0071 0.0021 J 0.019 0.0012 J 0.0012 J 0.00081 0.0021 B	 <0.00099 <0.00099 <0.00099 <0.00099 <0.0025 <0.0025 <0.0059 <0.0031 <0.0031 <0.0033 <0.0073 <0.0013 <0.0078 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0029 <0.0029 <0.0029 <0.0029
Heptachlor Epoxide mg Methoxychlor mg PAHs 2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Chrysene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Phenanthracene mg Renzo(b)fluoranthene mg Fluoranthene mg Fluorene mg Renzo(a,n)anthracene mg Fluorene mg Renzo(a,n)anthracene mg Fluorene mg Robert mg Renzo(a,n)anthracene mg Renzo(a,n)anthracene mg Fluorene mg Robert mg Renzo(a,n)anthracene mg Ren	/kg	39 (N) 31 (N) 230 (N) 2,300 (N) 0.22 (C) 0.22 (C) 0.22 (C) 2.2 (C) 2.2 (C) 310 (N) 310 (N) 0.22 (C) 160 (N) 230 (N)	510 (N) 410 (N) 3,100 (N) 3,100 (N) 3,9 (C) 0,39 (C) 39 (C) 39 (C) 0,39 (C) 4,100 (N) 4,100 (N) 4,100 (N) 3,9 (C) 2,000 (N) 3,100 (N)		0.00442 0.0044 0.00099 J <0.0024 0.0054 0.0049 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	 0.0064 0.0064 0.0026 0.0099 J 0.0074 0.0083 0.0051 0.011 0.0028 0.015 0.0095 J 0.0098 0.004 B 	 <0.00106 0.0018 B <0.0027 0.0017 J 0.013 0.019 0.0071 0.0071 0.0071 0.013 0.0021 J 0.012 J 0.0012 J 0.0081 0.0021 B 	 <0.00099 <0.0013 B <0.0025 <0.0025 <0.0059 <0.005 <0.013 <0.0031 <0.0033 <0.0073 <0.0013 J <0.0078 <0.0025 <0.0025 <0.0029 <0.0029 <0.0020
PAHs 2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)aphthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Benzo(k)fluoranthene mg Indeno(k)fluoranthene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Pluorene mg Naphthalene mg Phenanthrene mg Phenanthrene mg Pyrene mg PCBs None Detected volatile Organics Acetone mg Toluene mg Toluene mg	/kg /kg /kg /kg /kg /kg /kg /kg /kg /kg	31 (N) 230 {N} 2,300 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 2.2 {C} 2.2 {C} 0.022 {C} 0.022 {C} 10 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	410 {N} 3,100 {N} 31,000 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 0.39 {C} 0.39 {C} 4,100 {N} 4,100 {N} 4,100 {N} 3,9 {C} 2,000 {N} 3,100 {N}		0.0044 0.0099 J <0.0024 0.0054 0.0049 0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0052	0.0064 <0.0026 0.00099 J 0.0074 0.0098 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.0095 J 0.0098 0.004 B	0.0018 B <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.0071 0.0013 0.0021 J 0.019 0.0012 J 0.0012 J 0.0081 0.0021 B	0.0013 B <0.0025 <0.0025 <0.0059 0.005 0.013 0.0031 0.0073 0.0073 0.0013 J 0.0078 0.0025 0.0025
2-Methylnaphthalene mg Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluoranthene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Phenanthrene mg Aphthalene mg Phenanthrene mg Proces Roger mg Roger	/kg	230 (N) 2,300 (N) 0.22 {C} 0.022 {C} 0.22 {C} 2.2 {C} 2.2 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	3,100 (N) 31,000 (N) 3.9 (C) 0.39 (C) 3.9 (C) 39 (C) 0.39 (C) 4,100 (N) 4,100 (N) 3.9 (C) 2,000 (N) 3,100 (N)		0.00099 J <0.0024 0.0054 0.0049 0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	 <0.0026 0.00099 J 0.0074 0.008 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.0095 J 0.0098 0.004 B 	 <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0021 J 0.0012 J 0.0012 J 0.0012 J 0.0021 B 	 <0.0025 <0.0025 <0.0059 <0.005 <0.0031 <0.0031 <0.0033 <0.0073 <0.0013 <0.0078 <0.0078 <0.0078 <0.0025 <0.0039 <0.002 B
Acenaphthylene mg Anthracene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected	/kg	230 (N) 2,300 (N) 0.22 {C} 0.022 {C} 0.22 {C} 2.2 {C} 2.2 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	3,100 (N) 31,000 (N) 3.9 (C) 0.39 (C) 3.9 (C) 39 (C) 0.39 (C) 4,100 (N) 4,100 (N) 3.9 (C) 2,000 (N) 3,100 (N)		0.00099 J <0.0024 0.0054 0.0049 0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	 <0.0026 0.00099 J 0.0074 0.008 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.00995 J 0.0098 0.004 B 	 <0.0027 0.0017 J 0.013 0.012 0.019 0.0071 0.013 0.0021 J 0.019 0.0021 J 0.0012 J 0.0012 J 0.0012 J 0.0021 B 	 <0.0025 <0.0025 <0.0059 <0.005 <0.0031 <0.0031 <0.0033 <0.0073 <0.0013 <0.0078 <0.0078 <0.0078 <0.0025 <0.0039 <0.002 B
Anthracene mg Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone mg Toluene mg Toluene mg	/kg	2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 2.2 {C} 2.2 {C} 2.2 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	31,000 (N) 3.9 (C) 0.39 (C) 3.9 (C) 3.9 (C) 3.9 (C) 3.9 (C) 4.100 (N) 4.100 (N) 3.9 (C) 2,000 (N) 3,100 (N)		<0.0024 0.0054 0.0049 0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.00099 J 0.0074 0.0098 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.00995 J 0.0098 0.004 B	0.0017 J 0.013 0.012 0.019 0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	 <0.0025 0.0059 0.005 0.013 0.0031 0.0073 0.0013 J 0.0078 <0.0025 0.0029 0.002 B
Benzo(a)anthracene mg Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluoranthene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected volatile Organics Acetone mg Toluene mg Toluene mg	/kg /kg /kg /kg /kg /kg /kg /kg /kg /kg	0.22 {C} 0.022 {C} 0.022 {C} 0.22 {C} 0.22 {C} 2.2 {C} 2.2 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	3.9 {C} 0.39 {C} 3.9 {C} 3.9 {C} 3.9 {C} 3.9 {C} 3.9 {C} 4.100 {N} 4.100 {N} 4.9 {C} 2.000 {N} 3.100 {N}		0.0054 0.0049 0.0098 0.0068 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.0074 0.0098 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.0095 J 0.0098 J	0.013 0.012 0.019 0.0071 0.0071 0.003 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	0.0059 0.005 0.013 0.0031 0.0033 0.0073 0.0013 J 0.0078 <0.0025 0.0039
Benzo(a)pyrene mg Benzo(b)fluoranthene mg Benzo(b)fluoranthene mg Benzo(k)fluoranthene mg Benzo(k)fluoranthene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected volatile Organics Acetone mg Toluene mg Toluene mg	/kg	0.022 (C) 0.22 (C) 2.2 (C) 22 (C) 0.022 (C) 310 (N) 310 (N) 0.22 (C) 160 (N) 230 (N)	0.39 (C) 3.9 (C) 		0.0049 0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052	0.0098 0.017 0.0083 0.0051 0.011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.012 0.019 0.0071 0.0071 0.013 0.0021 J 0.0019 0.0012 J 0.0081 0.0021 B	0.005 0.013 0.0031 0.0033 0.0073 0.0013 J 0.0078 <0.0025 0.0039
Benzo(b)fluoranthene	/kg	0.22 {C} 2.2 {C} 22 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	3.9 {C} 		0.0098 0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.017 0.0083 0.0051 0.011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.019 0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	0.013 0.0031 0.0033 0.0073 0.0013 J 0.0078 <0.0025 0.0039 0.002 B
Benzo(g,h,i)perylene mg Benzo(k)fluoranthene mg Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluoranthene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone mg Toluene mg Toluene mg	/kg	2.2 {C} 22 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	39 {C} 390 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3,100 {N}		0.0068 0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.0083 0.0051 0.011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.0071 0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	0.0031 0.0033 0.0073 0.0013 J 0.0078 <0.0025 0.0039 0.002 B
Benzo(k)fluoranthene	/kg /kg /kg /kg /kg /kg /kg /kg	22 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	390 {C} 0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3,100 {N}		0.0028 0.0065 0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.0051 0.011 0.0028 0.015 0.00095 J 0.0098 0.004 B	0.0071 0.013 0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	0.0033 0.0073 0.0013 J 0.0078 <0.0025 0.0039 0.002 B
Chrysene mg Dibenzo(a,h)anthracene mg Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone Toluene mg	/kg /kg /kg /kg /kg /kg /kg	22 {C} 0.022 {C} 310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	0.39 {C} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3,100 {N}		0.0019 J 0.0089 0.0015 J 0.0052 0.0037 B	0.0028 0.015 0.00095 J 0.0098 0.004 B	0.0021 J 0.019 0.0012 J 0.0081 0.0021 B	0.0013 J 0.0078 <0.0025 0.0039 0.002 B
Fluoranthene mg Fluorene mg Indeno(1,2,3-cd)pyrene mg Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone mg Toluene mg	/kg /kg /kg /kg /kg /kg	310 {N} 310 {N} 0.22 {C} 160 {N} 230 {N}	4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 3,100 {N}		0.0089 0.0015 J 0.0052 0.0037 B	0.015 0.00095 J 0.0098 0.004 B	0.019 0.0012 J 0.0081 0.0021 B	0.0078 <0.0025 0.0039 0.002 B
Fluorene	/kg /kg /kg /kg /kg	310 {N} 0.22 {C} 160 {N} 230 {N}	4,100 {N} 3.9 {C} 2,000 {N} 3,100 {N}		0.0015 J 0.0052 0.0037 B	0.00095 J 0.0098 0.004 B	0.0012 J 0.0081 0.0021 B	<0.0025 0.0039 0.002 B
Indeno(1,2,3-cd)pyrene mg	/kg /kg /kg /kg	0.22 {C} 160 {N} 230 {N}	3.9 {C} 2,000 {N} 3,100 {N}		0.0052 0.0037 B	0.0098 0.004 B	0.0081 0.0021 B	0.0039 0.002 B
Naphthalene mg Phenanthrene mg Pyrene mg PCBs None Detected Volatile Organics Acetone Toluene mg	/kg /kg /kg	160 {N} 230 {N}	2,000 {N} 3,100 {N}		0.0037 B	0.004 B	0.0021 B	0.002 B
Phenanthrene mg Pyrene mg PCBs None Detected None Detected - Volatile Organics Acetone mg Toluene mg	/kg /kg	230 (N)	3,100 {N}					
Pyrene mg PCBs None Detected - Volatile Organics Acetone mg Toluene mg mg	/kg				0.0030	0.01	0.003	
PCBs None Detected - Volatile Organics Acetone mg Toluene mg			3,100 {N}		0.0071	0.012	0.019	0.0037
None Detected - Volatile Organics Acetone mg Toluene mg			0,100 (14)		0.007 1	0.012	0.010	0.0001
Acetone mg Toluene mg	- [
Toluene mg	•							•
	/kg	7,000 {N}	92,000 {N}		< 0.0060	< 0.0062	<0.0080 J	0.028 B
Semivolatile Organics	/kg	630 {N}	8,200 {N}		<0.0060	< 0.0062	<0.0080	0.00096 B
Ţ.								
Benzoic Acid mg		31,000 {N}	410,000 {N}		0.14 B	<1.0	<1.3	<1.2
bis(2-Ethylhexyl)phthalate mg		46 (C)	200 (C)		0.20 B	0.20 B	0.058 B	<0.25
Fluoranthene mg Phenanthrene mg	_	310 (N)	4,100 (N)		0.0095 J	0.015 J <0.21	0.029 J	0.013 J
Phenanthrene mg Pyrene mg	_	230 {N} 230 {N}	3,100 {N} 3,100 {N}		<0.20 0.022 J	0.014 J	0.018 J 0.022 J	0.012 J 0.010 J
Inorganics	ng	250 (14)	3,100 (14)		0.022 0	0.0140	0.022 0	0.0100
Aluminum mg	/ka	7,800 {N}	100,000 {N}	40,041	24,400	31,500	13,300	7,900
Antimony mg		3.13 {N}	40.88 {N}		0.460 L	0.320 B	0.280 B	0.370 B
Arsenic mg		0.43 {C}	1.91 {C}	15.8 {C}	10.6 J	4.92 J	2.10 L	4.60 L
Barium mg		1,564 {N}	20,440 (N)	209 (N)	151	54.5	77.2	74.8
Beryllium mg		15.6 (N)	204.4 {N}	1.02 {N}	1.36	2.20	0.890	0.920
Cadmium mg	_	3.9 {N}	51.1 {N}	0.69 {N}	0.0900 J	<0.120	<0.150	<0.150
Calcium mg	/	23.5 {N}	206 6 (NI)	 65.2 (NI)	5,640 J	1,490 J	61,200 J	102,000 J
	/kg /kg	23.5 (IN)	306.6 {N}	65.3 {N} 72.3	28.8	19.6	7.30 J	28.5 10.5 J
Copper mg		312.9 {N}	4,088 {N}	53.5 {N}	23.5 L	23.8 L	8.89	6.06
	/kg	5,500 (N)	72,000 (N)	50,962 {N}	41,100 J	32,000 J	17,600 J	23,300 J
Lead mg		400	750	26.8	24.6	23.6	14.6	19.3
	/kg				7,550 J	6,370 J	3,200 J	9,810 J
Manganese mg	_	156.4 {N}	2,044 {N}	2,543 {N}	1,030 J	180 J	681 J	649 J
Mercury mg		2.35	30.66	0.13	0.0500 J	0.0500 J	<0.0700	<0.0700
	/kg	156.4 {N}	2,044 {N}	62.8 {N}	23.4	31.0	11.5 J	10.9 J
	/kg	39.1 {N}	 511 {N}		3,030 0.470 L	4,730 <1.24 L	1,240 <1.59 L	1,310 <1.50 L
Selenium mg Sodium mg		39.1 (N)	511 (N)		28.7 B	34.9	81.9 J	83.6 J
	''A		7.154 {N}	2.11 {N}	0.240 J	0.310 J	0.180 J	0.290 J
Vanadium mg	/ka	0.548 {N}	()			59.5 J	31.7 J	37.8 J
Zinc mg	/kg /kg	0.548 {N} 7.8 {N}	102.2 {N}	108 {N}	71.5 J	33.3 3		25.8 J

RBC Risk Based Concentration.

(C) Carcinogen.

(N) Noncarcinogen.

B (Inorganics) Constituent concentration quantified as estimated

B (Organics) Constituent was detected in the associated method blank

Constituent concentration quantified as estimated Estimated concentration bias high.

Estimated concentration bias low.

Constituent concentration exceeds Adjusted Soil RBC (Residential) 24,400

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial)

16 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Surface Water Sampling Results, Bag Loading Area New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Date Collected:	Units	Aquatic Life Freshwater Chronic	Human Health (All Other Surface	BLASW04 06/24/02	BLASW05 06/24/02
Explosives					
m-Nitrotoluene	ug/L			0.43 J	0.42 J
Herbicides					
2,4-D	ug/L			3.26	<0.5
Organochlorine Pesticides					
Dieldrin	ug/L	0.056	0.0014	0.0041 J	0.00582 J
PAHs				•	
None Detected					
Perchlorate					
None Detected					
PCBs				•	
None Detected					
Volatile Organics				•	
Carbon Disulfide	ug/L			0.12 B	0.070 B
Chloroform	ug/L		29,000	0.18 J	0.13 J
Semivolatile Organics				•	
Butylbenzylphthalate	ug/L		5,200	0.44 B	<5.0
Di-n-Butylphthalate	ug/L		12,000	0.90 B	<5.0
Inorganics					
Aluminum	ug/L			140 J	384
Antimony	ug/L		4,300	<5.00	0.770 B
Barium	ug/L			85.1	84.7
Calcium	ug/L			57,200	54,600
Iron	ug/L			274	297
Lead	ug/L	14 {H}	-	0.500 B	0.340 B
Magnesium	ug/L			16,400	16,400
Manganese	ug/L			30.4	18.4
Potassium	ug/L			3,300	3,310
Selenium	ug/L	5	11,000	0.510 B	<5.00
Sodium	ug/L			34,200	34,700
Miscellaneous					
Hardness	mg/L			210	204

[{]H} Value has not been adjusted for hardness.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

J Constituent concentration quantified as estimated.

^{10.6} J Constituent concentration exceeds Virginia Surface Water Human Health Standards (All Other Surface Waters).

^{10.6} J Constituent concentration exceeds Virginia Surface Water Aquatic Life Freshwater Chronic Standard.

Table 3-7 Asbestos and Lead-Based Paint Samples, Bag Loading Area, January 2005 Sampling Event New River Unit, Radford Army Ammunition Plan, Radford Virginia.

Sample Name: Sample Matrix: Sample Type/Paint Color: Sample Depth (ft): Distance from Building (in): Date Collected:	Units	BLASS12 Soil - 0.0 - 0.5 6 01/26/05	BLASS13 Soil - 0.0 - 0.5 6 01/26/05	BLASS14 Soil - 0.0 - 0.5 30 01/26/05	BLASS15 Soil - 0.0 - 0.5 6 01/26/05	BLASS16 Soil - 0.0 - 0.5 6 01/26/05	BLASS17 Soil - 0.0 - 0.5 30 01/26/05	BLADF01 Flooring Deteriorated - - 01/26/05	BLADF02 Flooring Deteriorated - - 01/26/05	BLAIF01 Flooring Intact - - 01/26/05	BLAIF02 Flooring Intact - - 01/26/05	BLAW01 Wipe - - - - 01/26/05	BLAW02 Wipe - - - - 01/26/05	WB01 Wipe - - - - 01/26/05	BLAPC01 Paint White - - 01/26/05
Sample Components															
Acid Soluble	%	18.1	17.3	22.3	20.7	7.3	20.5	29.2	29.5	27.4	17.9	NA	NA	NA	NA
Organics	%	8.2	7.2	13.8	22.5	13.1	21.7	14.5	17.8	17.8	22.5	NA	NA	NA	NA
Other	%	66.3	68.0	60.7	42.6	67.6	46.2	45.0	42.2	38.4	38.7	NA	NA	NA	NA
Total Asbestos	%	7.4	7.6	3.2	14.2	11.9	11.6	11.3	10.5	16.5	20.8	NA	NA	NA	NA
Asbestos															
Actinolite	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA
Amosite	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA
Anthophyllite	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA
Chrysotile	%	7.4	7.6	3.2	14.2	11.9	11.6	11.3	10.5	16.5	20.8	NA	NA	NA	NA
Crocidolite	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA
Tremolite	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA
Total Asbestos	s/cm ²	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	0.0	225,000,000	122,000,000	2,820	NA
Inorganics															
Lead	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	306

Feet. Inches. in % Percent.

Structures per square centimeter.
Milligrams per kilogram.
Not Analyzed. s/cm²

mg/kg NA

												,	ition Plant, Radi	· · · · · · · · · · · · · · · · · · ·									
Sample Name:	:	Adjusted	Adjusted	Facility-Wide	50240012	502401224	502402436	502436012	5024361224	502460012	5024601224	504312012	5043121224	5043122436	504336012	5043361224	504360012	5043601224	81022612012	810226121224	810226122436	81022636012	810226361224
Sample Depth (ft):	:	Soil RBC	Soil RBC	Background	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2	0 - 1	1 - 2	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2	0 - 1	1 - 2	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2
Date Collected:	Units	(Residential)	(Industrial)	Point	12/08/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97
Asbesos																							
Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dioxin/Furan 1,2,3,4,6,7,8-HpCDD	ma/ka				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	I NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Amino-2,6-Dinitrotoluene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitroglycerine	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Herbicides							U.	I.	U.			Į.	I.	U.	I.						U		
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides																							
4,4'-DDT	mg/kg	1.9 (C)	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II Endrin	mg/kg	2.4 {N}	31 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PAHs	mg/kg	2.4 (IN)	31 {IN}		NA	INA	INA	INA	NA	NA	INA	NA	INA	INA	INA	NA	Avi	NA	INA	INA	INA	INA	INA
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthylene	mg/kg	230 {N}	3,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	0.022 {C} 0.22 {C}	0.39 {C} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg	0.22 {0}	3.9 (0)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 {C}	390 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 {N} 0.22 {C}	4,100 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg	0.22 (0)	3.9 (0)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs			1	•									l No					10.54					
Aroclor-1254 Aroclor-1260	mg/kg mg/kg	0.16 {C}	1.4 {C}		0.26 NA	0.031 JP NA	0.0070 JP NA	0.14 NA	0.13 NA	0.041 JP NA	ND NA	0.89 P NA	ND NA	0.046 P NA	0.32 NA	0.054 P NA	0.56 NA	10 D* NA	NA NA	NA NA	NA NA	NA NA	NA NA
Volatile Organics	ilig/kg				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chlorid∈	mg/kg	85 (C)	380 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Naphthalene Toluene	mg/kg mg/kg	160 {N} 630 {N}	2,000 {N} 8,200 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Semivolatile Organics	mg/kg	000 (14)	0,200 (14)		IVA	IVA	INA	INA	IVA	IVA	14/4	14/4	INA	IVA	14/4	14/4	14/4	1973	14/1	14/3	INA	14/4	INA
2.4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	48 J	210 J	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 {N}	6,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.022 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	41 J	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzoic Acid	mg/kg				NA NA	NA	NA	NA	NA NA	NA NA	NA	NA 750	NA ND	NA 440 I	NA 04	NA	NA 440 I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	750	ND NA	110 J	81 J	ND NA	110 J	260 J	NA NA	NA NA	NA NA	NA NA	NA NA
Butylbenzylphthalate Carbazole	mg/kg mg/kg	1,600 {N}	20,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 {C}	390 (C)		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	ND	ND ND	ND ND	ND	ND ND	ND	44 J	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	250 J	ND	NA	NA NA	NA NA	NA	NA NA
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate Fluoranthene	mg/kg mg/kg	310 {N}	4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA 59 J	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N) 4,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA ND	NA ND	NA ND	NA	NA ND	NA	NA 48 I	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene See footnotes on last page.	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	48 J	NA	NA	NA	NA	NA
OCC TOURTOLES UIT IAST PAGE.																							

See footnotes on last page.

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-8 through 3.9.IAA Tables-reformatted

Page 1 of 10

Committee Name	1			I =	50040040	F00404004	500400400	500400040	5004004004	500400040	5004004004	504040040	5040404004	F040400400	F0.400004.0	E040004004	504000040	5040004004	04000040040	040000404004	040000400400	04000000040	040000004004
Sample Name:		Adjusted	Adjusted	Facility-Wide	50240012	502401224	502402436	502436012	5024361224	502460012	5024601224	504312012	5043121224	5043122436	504336012	5043361224	504360012	5043601224	81022612012	810226121224	810226122436	81022636012	810226361224
Sample Depth (ft):	11	Soil RBC	Soil RBC	Background	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2 12/11/97	0 - 1	1 - 2	0 - 1	1 - 2	2 - 3 12/09/97	0 - 1 12/09/97	1 - 2 12/09/97	0 - 1 12/09/97	1 - 2	0 - 1 12/11/97	1 - 2 12/11/97	2 - 3 12/11/97	0 - 1 12/11/97	1 - 2 12/11/97
Date Collected:	Units	(Residential)	(Industrial)	Point	12/08/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/09/97	12/11/97	12/11/97	12/11/97	12/11/97	12/11/97
Inorganics																							
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	39,000	18,100	23,000	12,800	22,200	25,100	20,400	20,200	20,300	23,500	14,200	15,700	10,900	7,430	9,790	17,600	19,200	15,900	27,200
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.530 J	ND	ND	ND	ND	ND	ND	0.800 J	ND	ND	1.30 J	0.410 J	3.20 J	7.20 J	ND	ND	0.260 J	0.210 J	0.470 J
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	10.6	2.4	4.8	1.20 J	3.4	7.9	6	7.5	5.4	7.7	4.9	5.7	5.3	11.9	ND	8.2	6	1.40 J	8.2
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	80.1	20.0 J	12.8 J	61	16.4 J	54.7	29.4 J	961	50.2	40.5	394	133	489	906	20.2 J	8.50 J	22.7 J	12.3 J	14.0 J
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.760 J	0.500 J	0.390 J	0.370 J	0.34	0.700 J	0.650 J	0.580 J	0.360 J	0.340 J	0.470 J	0.430 J	0.550 J	0.370 J	ND	ND	ND	ND	ND
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	NA	NA	NA	NA	NA	NA	NA	0.640 J	ND	ND	0.420 J	ND	2.1	2	ND	ND	ND	ND	ND
Calcium	mg/kg				1,690	1,280	1,560	1,640	1,220	1,460	1,460	10,500	876 J	734 J	23,500	7,930	148,000	82,000	1,340	633 J	1,080	1,300	488 J
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	60.3	31.4	48.8	25.5	46.1	40.9	36.6	511	42.4	42.8	468	176	884	1,920	25.2	44.3	43.9	33.5	51.1
Cobalt	mg/kg			72.3	5.90 J	4.10 J	2.80 J	15.9	2.50 J	5.60 J	4.10 J	10.3	4.40 J	2.60 J	8.70 J	10.5	15.3	16.9	0.260 J	1.00 J	0.980 J	0.830 J	1.50 J
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	29.7	16.8	20.4	16.8	16.6	26.7	23.5	1,780	19	30.4	653	123	397	812	15.9	14.4	18.1	11.7	17.3
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	45,500	29,000	37,400	19,100	35,200	40,600	33,900	56,000	35,800	33,500	38,600	33,400	41,800	88,000	18,600	40,900	41,300	31,500	44,800
Lead	mg/kg	400	750	26.8	25.9	28	26.7	51.9	36.1	40.3	43.2	4,090	15.4	18.5	3,850	1,280	7,370	16,200	10.7	11.4	11.5	10.5	13.3
Magnesium	mg/kg				1,520	569 J	511 J	784 J	464 J	745 J	722 J	6,430	1,070	1,010	15,000	4,650	64,600	52,500	447 J	324 J	509 J	479 J	414 J
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	104	107	83.7	420	88.8	151	100	312	169	51.9	281	274	349	584	8.6	23.4	25.1	25.8	29.1
Mercury	mg/kg	2.35	30.66	0.13	0.4	ND	ND	0.11	ND	3.3	0.63	0.1	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	21	12.8	13.7	11	11.7	18.2	16.6	30	9.2	8.8	20.3	15.8	30	57.3	1.40 J	5.20 J	4.80 J	3.90 J	7.80 J
Potassium	mg/kg				1,100 J	521 J	633 J	394 J	561 J	613 J	484 J	697 J	586 J	640 J	1,410	607 J	4,610	2,100	173 J	239 J	306 J	240 J	477 J
Selenium	mg/kg	39.1 {N}	511 {N}		1.9	0.710 J	1.3	ND	1.3	0.570 J	1	1.2	1.4	1.2	0.850 J	0.870 J	ND	ND	0.570 J	1.4	1.2	0.760 J	1.9
Silver	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	0.180 J	NA	NA	NA	NA	NA
Sodium	mg/kg				52.9 J	38.6 J	38.5 J	29.3 J	38.0 J	26.9 J	30.0 J	44.3 J	39.0 J	30.9 J	60.9 J	43.2 J	138 J	127 J	22.0 J	22.3 J	23.2 J	20.8 J	32.7 J
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	ND	0.580 J	ND	0.460 J	ND	ND	0.410 J	ND	ND	ND	0.370 J	ND	ND	ND	ND	ND	ND	ND	0.630 J
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	98.4	64.6	87.3	46	82.3	86.5	70.6	66.9	74.8	71.4	39.9	52.6	24.6	23.4	42.5	80.8	84.4	61.5	95.3
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 (N)	29.6	16.4	11.5	21.3	9.20	34.0	23.6	1,550	17.0	27.0	1,090	323	1,490	3,170	6.00	10.7	19.4	7.90	14.1
Miscellaneous																							
рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

-							T				Airily Airiiniumiion i	. ,, .	J					_				
Sample Name:		Adjusted	Adjusted	Facility-Wide	81022660012	810226601224	81027112012	810271121224	810271122436		810271361224	81027160012	810271601224	81027236012	810272361224	81027260012	810272601224	8102727012	81027271224	81027272436	SS-03	SS-11
Sample Depth (ft): Date Collected:	Units	Soil RBC (Residential)	Soil RBC (Industrial)	Background Point	0 - 1 12/11/97	1 - 2 12/11/97	0 - 1 12/08/97	1 - 2 12/08/97	2 - 3 12/08/97	0 - 1 12/08/97	1 - 2 12/08/97	0 - 1 12/08/97	1 - 2 12/08/97	0 - 1 12/08/97	1 - 2 12/08/97	0 - 1 12/08/97	1 - 2 12/08/97	0 - 1 12/08/97	1 - 2 12/08/97	2 - 3 12/08/97	0 - 0.5 06/03/97	0 - 0.5 06/03/97
Asbesos	•	(i tooluolitiui)	(madeina)		,,	,.,,,,	12/00/01	.2,00,0.	,	12/00/01	, 00, 0.	.2,00,0.	.2,00,0.	.2,00,0.	.2,00,0.		12/00/01	12/00/01	12/00/01	12/00/07	00/00/01	
Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Dioxin/Furan																			_			
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF 2,3,7,8-TCDD	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
OCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA						
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Explosives		•	•	1																		
4-Amino-2,6-Dinitrotoluene Nitroglycerine	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Herbicides	Hig/kg				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA						
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Organochlorine Pesticides							I.	1		<u>u</u>				I.				II.	1			
4,4'-DDT	mg/kg	1.9 (C)	8.4 (C)		NA	NA	0.0032 JP	ND	ND	0.00066 J	0.00049 JP	0.00062 JP	0.0013 JP	NA	NA	NA	ND	ND	ND	0.00042 JP	NA	NA
Endosulfan II	mg/kg				NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	0.0003 J	NA	NA
Endrin	mg/kg	2.4 {N}	31 {N}		NA	NA	0.0018 JP	0.00024 JP	0.0013 JP	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	0.00042 JP	NA	NA
PAHs 2-Methylnaphthalene	ma/ka	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Acenaphthene	mg/kg mg/kg	470 {N}	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA					
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	0.022 {C} 0.22 {C}	0.39 {C} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Benzo(g,h,i)perylene	mg/kg	0.22 (0)	3.9 (0)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA						
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Fluoranthene Fluorene	mg/kg mg/kg	310 {N} 310 {N}	4,100 {N} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
PCBs		0.40 (0)	1.1(0)		l NIA	l NA	ND	I ND	l ND	L ND	ND	ND	ND.	NIA.	NIA	NIA	ND	0.0040 ID	L ND	ND.	I NIA	NIA
Aroclor-1254 Aroclor-1260	mg/kg mg/kg	0.16 {C}	1.4 {C}		NA NA	NA NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	NA NA	NA NA	NA NA	ND NA	0.0049 JP NA	ND NA	ND NA	0.37	NA 1.0
Volatile Organics	mg/kg				107	107	10.0	10.1	10.0	107	107	10.1	1471	101	10/1	107	107	10/1	107	10.0	0.01	0
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.0090 B						
d-Limonene	mg/kg				NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA a a a a a a	NA 0.0040.D
Methylene Chloride Naphthalene	mg/kg mg/kg	85 (C) 160 (N)	380 {C} 2.000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0020 B ND	0.0040 B 0.00090 B						
Toluene	mg/kg	630 {N}	8,200 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA						
Semivolatile Organics	3. 3	,	-, (,				ı	1						ı					1		ı	-
2,4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA	NA	NA	NA NA	NA	NA												
Acenaphthylene Anthracene	mg/kg mg/kg	230 (N)	3,100 {N} 31,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Benzo(a)anthracene	mg/kg	0.22 {C}	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.11 J	0.070 J						
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	ND	0.15 J
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.20 J						
Benzo(g,h,i)perylene	mg/kg				NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	ND	0.11 J
Benzo(k)fluoranthene Benzoic Acid	mg/kg	2.2 {C}	39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	0.15 J NA						
bis(2-Ethylhexyl)phthalate	mg/kg mg/kg	46 (C)	200 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.22 J	0.085 J	0.082 J	NA ND	1.3 K	5.7						
Butylbenzylphthalate	mg/kg	1,600 {N}	20,000 {N}		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	ND	0.13 J
Carbazole	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.10 J	0.15 J						
Dibenzo(a,h)anthracene	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Dibenzofuran Diethylphthalate	mg/kg mg/kg	6,300 {N}	82,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	NA 0.070 J						
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	0.070 J						
Di-n-Octylphthalate	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA						
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.30 J	0.20 J						
Fluorene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Naphthalene Phenanthrene	mg/kg mg/kg	230 (N)	3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.10 J	NA 0.13 J						
Pyrene	mg/kg		3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.10 J	0.13 J 0.20 J						
See footnotes on last page.	J	(-)	, ()		•																· · · · · ·	

Sample Name		Adjusted	Adjusted	Facility-Wide	81022660012	810226601224	81027112012	810271121224	810271122436	81027136012	810271361224	81027160012	810271601224	81027236012	810272361224	81027260012	810272601224	8102727012	81027271224	81027272436	SS-03	SS-11
Sample Depth (ft)		Soil RBC	Soil RBC	Background	0 - 1	1 - 2	0 - 1	1 - 2	2 - 3	0 - 1	1 - 2	0 - 1	1 - 2	0 - 1	1 - 2	0 - 1	1 - 2	0 - 1	1 - 2	2 - 3	0 - 0.5	0 - 0.5
Date Collected	l: Units	(Residential)	(Industrial)	Point	12/11/97	12/11/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	12/08/97	06/03/97	06/03/97
Inorganics																						
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	24,300	25,600	29,300	20,800	23,800	20,000	35,100	18,500	46,900	18,000	31,500	35,400	38,600	16,100	37,600	33,200	15,300	7,920
Antimony	mg/kg	3.13 {N}	40.88 {N}		ND	0.290 J	ND	ND	ND	ND	ND	ND	0.230 J	ND	ND	0.240 J	ND	ND	ND	ND	ND	0.6
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	5.5	5	10.5	2.10 J	2.8	2.6	8.2	1.40 J	11.4	4	8.1	11.3	14.6	8.7	11.3	11.1	25.2	85.8
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	14.4 J	12.6 J	29.2 J	29.8 J	46.4 J	39.0 J	54.4	20.3 J	31.9 J	33.9 J	70	27.2 J	54.8	166	51.5	82.6	50.2 J	9,360 J
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.420 J	0.340 J	1.2	0.860 J	0.810 J	0.680 J	1.2	0.460 J	1.1	0.890 J	2.8	0.630 J	3.8	0.670 J	2.3	2.9	0.5	0.6
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	ND	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.3	7.8
Calcium	mg/kg				866 J	275 J	739 J	1,370	1,790	1,490	1,400	1,250	1,360	2,640	2,720	2,590	2,670	1,060	4,380	3,170	28,000	54,000
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	49.8	50.8	37.2	28.8	31.9	26.5	40	24.8	44.4	26.8	52.5	41.5	56.7	25.2	48.5	47.1	54.4	86.8
Cobalt	mg/kg			72.3	1.90 J	1.40 J	27.1	6.10 J	5.90 J	4.80 J	21.1	3.00 J	5.90 J	26	17.5	9.30 J	11.9	12	47.6	18.7	23.8	76.9
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	18.8	16.5	42.4	19.6	207	175	34.5	15.2	34.6	35	29.9	51.5	36.8	274	38.3	61.6	24,600	38,000
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	40,900	44,800	38,500	37,400	38,600	32,200	41,600	29,300	45,300	28,900	37,300	41,100	47,000	21,100	40,800	30,900	35,800	28,700
Lead	mg/kg	400	750	26.8	13.9	13.5	38.3	25.4	24.3	20.4	49	12.4	30	26.8	24.2	20.8	25.8	475	40	30	207	1,040
Magnesium	mg/kg				497 J	323 J	1,500	1,400	1,600	1,340	1,400	921 J	1,530	2,190	14,600	1,240	3,940	1,910	8,420	22,900	28,800	46,000
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	48.4	35.4	590	69.3	56.5	47.1	410	34.1	84.1	188	442	99.4	178	221	341	408	225	498
Mercury	mg/kg	2.35	30.66	0.13	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.1	ND	0.15	ND	ND	ND	NA	NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	9.2	7.40 J	34.8	14.7	16.8	14	27.4	7.70 J	24.7	15.1	37.9	16.9	38.9	13.9	33	32.5	61	110
Potassium	mg/kg				440 J	413 J	921 J	642 J	734 J	620 J	1,080 J	621 J	1,450	778 J	3,940	855 J	1,830	718 J	2,430	4,620	673	664
Selenium	mg/kg	39.1 {N}	511 {N}		1.2	1.6	1.2	0.750 J	0.850 J	0.730 J	0.830 J	0.990 J	1.3	0.600 J	ND	1.6	1.4	0.660 J	0.860 J	0.590 J	ND	1.2
Silver	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.6	9.4
Sodium	mg/kg				33.4 J	29.5 J	45.1 J	43.5 J	47.5 J	30.4 J	29.7 J	41.8 J	27.0 J	33.7 J	42.7 J	35.0 J	35.8 J	26.6 J	39.3 J	48.8 J	NA	NA
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	ND	ND	ND	ND	ND	ND	0.660 J	ND	ND	ND	0.530 J	ND	0.550 J	ND	ND	0.520 J	1	1
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	76.6	91.8	65.8	ND	ND	59.7	77.9	58.3	84.8	54.6	67.5	79.9	83.1	37.6	76.7	59.2	53	60
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	21.4	13.5	61.6	ND	ND	43.3	56.3	22.6	43.3	30.4	35.7	36.3	35.9	293	43.8	86.2	626	21,800
Miscellaneous																						
рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-8 through 3.9.IAA Tables-reformatted

Page 4 of 10

Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-11a	SS-11b	SS-12	TR-01A	TR-01B	IATP1A	IATP1B	IATP1C	IATP1D	IATP2A	IATP2B	IATP2C	IATP2D	IASB1A	IASB1B	IASB2A	IASB2B	IASB2C	IASB3A	IASB3B	IASB4A		IASB5A
Sample Depth (ft):	11-14-	Soil RBC	Soil RBC	Background	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0.5 - 1	0.5 - 1	4 - 4.5	4 - 4.5	0.5 - 1	0.5 - 1	4 - 4.5	4 - 4.5	0.5 - 1	5 - 6	0 - 2	4 - 6	26 - 28	0.5 - 1	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1
Date Collected:	Units	(Residential)	(Industrial)	Point	03/30/98	03/30/98	03/30/98	04/02/98	04/02/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98
Asbesos Chrysotile	%ASB				NA	NA NA	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dioxin/Furan	70AOD				IVA	14/3	2.1	IVA	14/3	14/4	14/-1	IVA	IVA	INA	IVA	INA	IVA	19/3	14/3	11/3	14/3	14/3	IVA	14/4	14/3	14/4	11/1
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
OCDF Total HpCDDs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDFs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Explosives	mg/ng				1471	14/1	10.0	1471	1471	101	14/1	14/1	1471	100	1471	1471	10.0	14/1	14/1	107	14/1	1471	107	101	14/1	10.1	
4-Amino-2,6-Dinitrotoluene	mg/kg				NA	NA	NA	NA	NA	<0.2	< 0.3	< 0.3	<0.2	< 0.3	<0.3	<0.2	< 0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitroglycerine	mg/kg				NA	NA	NA	NA	NA	<1.2	<1.3	<1.3	<1.2	<1.3	<1.3	<1.2	<1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides																											
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides		4.0 (0)	0.4 (0)		NIA.	L NIA	NIA I	_	ND	NIA	NIA	NIA	NIA	NIA	NIA I	NIA	NIA	NIA	I NIA I	NIA	L NIA	I NIA	I NA I	NIA T	NIA.	I NA I	NIA.
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA NA	NA NA	NA NA	N/A	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II Endrin	mg/kg mg/kg	2.4 {N}	31 {N}		NA NA	NA NA	NA NA	NA 0.02	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PAHs	86	(**)																							1 20 1		
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.022 {C}	3.9 (C)		NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 (C)	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracen€	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 {N} 0.22 {C}	4,100 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Naphthalene	mg/kg				NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs		0.10.(0)		ı																							
Aroclor-1254 Aroclor-1260	mg/kg mg/kg	0.16 {C}	1.4 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Volatile Organics	ilig/kg				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene Toluene	mg/kg	160 (N)	2,000 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Semivolatile Organics	mg/kg	630 {N}	8,200 {N}		INA	INA	INA	INA	INA	IVA	NA	IVA	INA	INA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	INA	INA
2,4-Dinitrotoluene	mg/kg	16 {N}	200 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.38	< 0.40	< 0.40	<0.42	<0.41	<0.46	<0.46	<0.43	< 0.49	<0.42
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA	NA	NA	NA	NA	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	< 0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	0.30 J	ND	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	1.0	ND	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	3.5 5.2 C	ND 0.040 J	0.060 J 0.080 J	<0.37 <0.37	NA NA	NA NA	<0.39 <0.39 J	<0.38 <0.38 J	NA NA	NA NA	<0.38	<0.40 <0.40	<0.40 <0.40	<0.42 <0.42	<0.41 <0.41	<0.46 <0.46	<0.46 <0.46	<0.43 [<0.38] <0.43 [<0.38]	<0.49	<0.42 <0.42 J
Benzo(b)fluoranthene	mg/kg	0.022 {C}	3.9 (C)		NA NA	NA NA	NA NA	13 C	0.040 J	0.12 J	<0.37	NA NA	NA	<0.39 J	<0.38 J	NA NA	NA NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]		<0.42 J
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	0.040 J	<0.37	NA	NA	<0.39 J	<0.38 J	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]		<0.42 J
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		NA	NA	NA	6.5 C	0.050 J	0.16 J	<0.37	NA	NA	<0.39 J	<0.38 J	NA	NA	<0.38	0.050 J	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]		<0.42 J
Benzoic Acid	mg/kg				NA	NA	NA	0.30 J	0.10 J	<1.9	<1.8	NA	NA	<1.9	<1.9	NA	NA	<1.9	<2.0	<2.0	<2.1	<2.1	<2.3	<2.3	<2.2 [<1.9]	<2.4	<2.1
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		NA	NA	NA NA	0.40 J	0.20 J	0.53 J	0.090 J	NA	NA	0.60	0.23 J	NA	NA	0.030 J	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Butylbenzylphthalate Carbazole	mg/kg mg/kg	1,600 {N}	20,000 {N}		NA NA	NA NA	NA NA	NA 0.50 J	NA ND	<0.38 J <0.38	<0.37 <0.37	NA NA	NA NA	<0.39 <0.39	<0.38 <0.38	NA NA	NA NA	<0.38	<0.40 <0.40	<0.40 <0.40	<0.42 <0.42	<0.41 <0.41	<0.46 <0.46	<0.46 <0.46	<0.43 [<0.38] <0.43 [<0.38]	<0.49 <0.49	<0.42 <0.42
Chrysene	mg/kg	22 {C}	390 (C)		NA NA	NA NA	NA NA	7.7 C	0.060 J	0.11 J	<0.37	NA NA	NA NA	<0.39	<0.38	NA NA	NA NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Dibenzo(a,h)anthracene	mg/kg				NA	NA	NA	0.94	ND	<0.38	<0.37	NA	NA	<0.39 J	<0.38 J	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42 J
Dibenzofuran	mg/kg				NA	NA	NA	NA	NA	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		NA	NA	NA	NA	NA	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	0.070 J [<0.38]	<0.49	<0.42
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		NA	NA	NA NA	NA	NA	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	0.11 J	<0.40	0.090 J	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Di-n-Octylphthalate	mg/kg	310 (NI)	4 100 (NI)		NA NA	NA NA	NA NA	NA 4.4.C	NA	<0.38	<0.37	NA NA	NA NA	0.040 J	<0.38 J	NA NA	NA NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42 J
Fluoranthene Fluorene	mg/kg mg/kg	310 {N} 310 {N}	4,100 {N} 4,100 {N}		NA NA	NA NA	NA NA	4.4 C NA	ND NA	0.16 J <0.38	<0.37 <0.37	NA NA	NA NA	<0.39 <0.39	<0.38 <0.38	NA NA	NA NA	<0.38	0.080 J <0.40	<0.40 <0.40	<0.42 <0.42	<0.41 <0.41	<0.46 <0.46	<0.46 <0.46	<0.43 [<0.38] <0.43 [<0.38]	<0.49 <0.49	<0.42 <0.42
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA NA	NA NA	6.1 C	ND	<0.38	<0.37	NA	NA	<0.39 J	<0.38 J	NA NA	NA NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]		<0.42 J
Naphthalene	mg/kg				NA	NA	NA	NA	NA	<0.38	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	<0.40	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	0.30 J	ND	0.070 J	< 0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	0.060 J	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	<0.42
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	4.9 C	ND	0.15 J	<0.37	NA	NA	<0.39	<0.38	NA	NA	<0.38	0.050 J	<0.40	<0.42	<0.41	<0.46	<0.46	<0.43 [<0.38]	<0.49	< 0.42
See footnotes on last page.																											

Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-11a	SS-11b	SS-12	TR-01A	TR-01B	IATP1A	IATP1B	IATP1C	IATP1D	IATP2A	IATP2B	IATP2C	IATP2D	IASB1A	IASB1B	IASB2A	IASB2B	IASB2C	IASB3A	IASB3B	IASB4A	IASB4B	IASB5A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0.5 - 1	0.5 - 1	4 - 4.5	4 - 4.5	0.5 - 1	0.5 - 1	4 - 4.5	4 - 4.5	0.5 - 1	5 - 6	0 - 2	4 - 6	26 - 28	0.5 - 1	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1
Date Collected:	Units	(Residential)	(Industrial)	Point	03/30/98	03/30/98	03/30/98	04/02/98	04/02/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98
Inorganics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,		•	•			•							•				•		•					
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	8,060	3,900	4,860	NA	NA	7,680	5,670	9,160	9,690	13,900	9,870	13,500	16,700	11,100	11,500	12,900	11,500	9,930	29,200	17,900	15,600 [14,200]	15,700	10,000
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA	NA	NA	NA	NA	< 0.560	< 0.550	<0.580	< 0.600	<0.580	< 0.560	< 0.650	< 0.720	< 0.550	< 0.610	< 0.590	< 0.640	< 0.600	<0.680	<0.700	<0.640 [<0.550]	<0.710	< 0.620
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	100	56.4	164	NA	NA	4.30 K	1.80 K	3.3	4	28.8 K	8.40 K	5.9	10.1	6.1	4.3	6.4	7.6	3.6	7.8	3.9	6.60 [5.50]	7.8	2
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	11,800	4,600	3,220	NA	NA	527 K	50.7 K	22.5 B	24.2 B	1,170 K	270 K	38.5	41.7	32.2 K	48.2 K	29.2 K	39.6 K	9.50 B	35.5 K	18.0 B	75.5 K [55.1]	51.4 K	38.7 K
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.5	ND	ND	NA	NA	<0.110	<0.110	<0.120	<0.120	0.580 J	0.520 J	2.1	1.7	<0.110	<0.120	<0.120	<0.130	<0.120	0.360 J	0.280 J	2.30 [0.410 J]	4.3	0.450 J
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	5.5	3.2	6.8	NA	NA	0.250 J	<0.110	<0.120	<0.120	1	0.140 J	<0.130	<0.140	<0.110 L	<0.120 L	<0.120 L	<0.130 L	<0.120 L	<0.140 L	<0.140 L	2.00 L [<0.110]	<0.140 L	<0.120 L
Calcium	mg/kg				62,100	101,000	87,700	NA	NA	1,680	1,230	759 B	508 B	25,100	4,730 B	2,220 B	4,160 B	762 B	89.6 B	702 B	230 B	220 B	943 B	462 B	866 B [715 B]	2,080 B	777 B
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	79.4	79.1	99.2	NA	NA	21.8	15.6	15.9	17.3	36.8	23.7	42.2	36	54.2	28.6	40.5	40.9	24	48.5	35.2	35.5 [22.9]	59.8	22
Cobalt	mg/kg			72.3	66.5	42.1	85.6	NA	NA	4.20 K	2.10 K	0.950 J	1.10 J	17.6 K	11.8 K	25.6	12.3	1.40 J	0.750 J	1.10 J	1.30 J	2.10 J	4.40 J	3.20 J	39.4 [7.30]	18.3	7.3
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	43,900	53,400	56,500	NA	NA	1,280 K	38.9 K	9.10 B	24.5	7,070	1,440	21.1	23.3	72.4	28.9	19.2	25.4	6.10 B	29	12.1 B	265 [27.2]	20.3	83.6
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	28,600	27,500	35,100	NA	NA	16,700	12,600	17,600	19,300	32,300	24,300	33,200	30,900	40,600	19,600	42,700	36,700	25,600	52,600	31,200	31,200 [35,600]	36,300	23,100
Lead	mg/kg	400	750	26.8	918	336	563	NA	NA	41.7 L	11.8 L	7	6.4	190	75.2	24.4	22.7	14.1	10.9	8.5	8.3	11.5	21.8	16.4	46.5 [28.0]	23.8	19.2
Magnesium	mg/kg				52,500	82,200	71,500	NA	NA	2,370	739	438 B	296 B	18,900	3,680	2,660	9,380	523 B	128 B	317 B	153 B	120 B	677 B	261 B	2,370 B [989 B]	1,940 B	1,240 B
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	465	300	281	NA	NA	57.7 K	114 K	38.8	22.4	308	234	270	269	44.4	24.1	33.4	27.9	46.4	78.7	60	144 [134]	557	49.8
Mercury	mg/kg	2.35	30.66	0.13	0.2	ND	ND	NA	NA	0.5	0.12	<0.120	<0.120	0.660 K	0.150 K	0.17	0.2	0.270 K	<0.120	<0.120	<0.130	<0.120	<0.140	<0.150	<0.130 [<0.110]	<0.150	<0.130
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	97.2	124	173	NA	NA	5.70 K	1.10 K	0.470 B	0.830 B	33.5 K	13.3 K	21.7	19.3	1.50 K	0.880 K	<0.120	1.20 K	3.20 K	10.3 K	7.50 K	17.5 K [7.80]	48.7 K	8.40 K
Potassium	mg/kg				733	837	814	NA	NA	243 K	197 K	274 B	180 B	821 K	418 B	1,120 J	5,570 J	304 B	176 B	218 B	199 B	184 B	352 B	276 B	694 B [390 B]	840 K	324 B
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	NA	< 0.560	< 0.550	0.58	<0.600	<0.580	< 0.560	< 0.650	<0.720	<0.550 J	<0.610 J	<0.590 J	0.660 J	<0.600 J	<0.680 J	0.720 J	<0.640 J [<0.550]	<0.710 J	<0.620 J
Silver	mg/kg	39.1 {N}	511 {N}		11	13	22.5	NA	NA	0.630 L	<0.220 L	<0.230	<0.240	1.90 B	0.300 B	<0.260	<0.290	<0.220	<0.250	<0.240	0.270 B	<0.240	<0.270	<0.280	<0.260 [<0.220]	<0.280	<0.250
Sodium	mg/kg				ND	ND	101	NA	NA	35.8 B	35.1 B	69.4 B	93.2 B	84.7 B	48.8 B	134 B	1,350 B	47.6 B	41.8 B	35.8 B	36.2 B	44.3 B	57.6 B	37.8 B	48.1 B [90.0 B]	48.5 B	36.5 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.5	0.3	0.7	NA	NA	<0.220 L	<0.220 L	0.540 B	0.790 B	0.990 B	<0.220 L	<0.260	<0.290	<0.220	<0.250	<0.240	0.550 B	<0.240	0.560 B	<0.280	0.630 B [0.370 B]	<0.280	<0.250
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	23.8	10.8	16.3	NA	NA	33.1 K	25.0 K	33.1	34.9	43.3 K	38.7 K	49.2	47.2	69.0 L	63.1	70.0 L	56.0 L	43.0 L	89.8 L	54.5 L	57.1 L [58.1]	58.0 L	40.9 L
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	18,300	8,280	6,460	NA	NA	467	30.8	8.20 B	13.5 B	1,090	312	21.4 B	33.8 B	50.5 B	26.8 B	16.7 B	24.7 B	11.3 B	41.1 B	26.6 B	101 B [30.5 B]	34.8 B	82.4 B
Miscellaneous																											
рН	pH Units				NA	NA	NA																				
Total Organic Carbon	mg/kg				NA	NA	NA																				

See footnotes on last page.

												,	,	,	Radioid, Viigi												
Sample Name:		Adjusted	Adjusted	Facility-Wide	IASB5B	IASB06A	IASB06B	IASB06C	IASB07A	IASB07B	IASB08A	IASB08B	IASB09A	IASB09B	IASB10A	IASB10B	IASB11A	IASB11B	IASB12A	IASB12B	IASB12C	IASB13A	IASB13B	IASB13C	IASB14A	IASB14B	IASB14C
Sample Depth (ft):	11	Soil RBC	Soil RBC	Background	0.5 - 6	0 - 0.5	4 - 6	8 - 10	0 - 0.5	4 - 6	0 - 0.5	4 - 6	0 - 0.5	4 - 6	0 - 0.5	2 - 4	0 - 0.5	2 - 4	0 - 0.5	4 - 6	8 - 10	0 - 0.5	1 - 2	2 - 4	0 - 0.5	1 - 2	2 - 4
Date Collected:	Units	(Residential)	(Industrial)	Point	08/05/98	06/10/02	06/18/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/18/02	06/11/02	06/18/02	06/18/02	06/11/02	06/18/02	06/18/02
Asbesos Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dioxin/Furan	70AGD				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF Total HpCDDs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDFs	mg/kg				NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Explosives	<i>y y</i>	•	ı							ı					ı.			I						I		L	
4-Amino-2,6-Dinitrotoluene	mg/kg				<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitroglycerine	mg/kg				<1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides																											
None Detected					NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides 4,4'-DDT	mg/kg	1.9 (C)	8.4 {C}		NA	<0.00755	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	mg/kg	1.9 (0)	0.4 (0)		NA NA	<0.00755	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA
Endrin	mg/kg	2.4 {N}	31 {N}		NA	< 0.00755	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs															· · · · · · · · · · · · · · · · · · ·												
2-Methylnaphthalen€	mg/kg	31 {N}	410 {N}		NA	0.002 B	<0.0019	0.0042 B	NA	NA	0.0015 B	<0.0022	0.00092 B	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Acenaphthene	mg/kg	470 {N}	6,100 {N}		NA	<0.0019	<0.0019	0.0022 B	NA	NA	<0.0021	<0.0022	<0.0021	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Acenaphthylene Anthracene	mg/kg mg/kg	230 {N} 2,300 {N}	3,100 {N} 31,000 {N}		NA NA	<0.0019 <0.0019	<0.0019 <0.0019	0.002 J 0.0011 J	NA NA	NA NA	<0.0021 <0.0021	<0.0022 <0.0022	<0.0021 <0.0021	<0.0024 <0.0024	<0.0024 <0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Benzo(a)anthracene	mg/kg	0.22 {C}	31,000 {N} 3.9 {C}		NA NA	0.0036	<0.0019	<0.00113	NA NA	NA NA	0.0021 0.0018 J	<0.0022	0.0021	<0.0024	<0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	0.0038	<0.0019	<0.0023	NA	NA	0.002 J	<0.0022	0.0028	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	0.0095	<0.0019	<0.0023	NA	NA	0.0049	<0.0022	0.0065	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Benzo(g,h,i)perylene	mg/kg				NA	0.0068	<0.0019	<0.0023	NA	NA	0.0023	<0.0022	0.0023	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA NA	0.0028	<0.0019 <0.0019	<0.0023 <0.0023	NA NA	NA NA	0.0014 J	<0.0022	0.0022	<0.0024 <0.0024	<0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg	22 {C}	390 {C}		NA NA	0.0054 <0.0019	<0.0019	<0.0023	NA NA	NA NA	0.0026 <0.0021	<0.0022 <0.0022	0.0037 <0.0021	<0.0024	<0.0024 <0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	0.011	< 0.0019	<0.0023	NA	NA	NA	NA	NA	NA	NA NA	NA	0.0047	<0.0022	0.0079	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	< 0.0019	< 0.0019	0.0022 J	NA	NA	< 0.0021	< 0.0022	<0.0021	<0.0024	< 0.0024	NA	NA	NA	NA	NA	NA						
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	0.0043 J	<0.0019	<0.0023	NA	NA	0.0017 J	<0.0022	0.0023 J	<0.0024	<0.0024	NA	NA	NA	NA	NA	NA						
Naphthalene	mg/kg		2 400 (NI)		NA NA	0.0013 B	<0.0019	0.0034 B	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00088 B	<0.0022	<0.0021	<0.0024	<0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene Pyrene	mg/kg mg/kg	230 {N} 230 {N}	3,100 {N} 3,100 {N}		NA NA	0.005 0.0081	0.00084 J <0.0019	0.0014 J <0.0023	NA NA	NA NA	0.0035 0.0033	<0.0022 <0.0022	0.0034 0.0053	<0.0024 <0.0024	0.001 J <0.0024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
PCBs	mg/kg	200 (14)	0,100 (14)		1471	0.0001	10.0010	Q0.0020	1471	14/1	14/1	10/1	1471	107	10.0	1171	0.0000	V0.0022	0.0000	Q0.0024	V0.002-1	107	100	10/1	10.0	1471	
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		NA	< 0.030	< 0.030	< 0.040	NA	NA	NA	NA	< 0.040	< 0.040	< 0.040	0.12	< 0.040	< 0.040	0.050	< 0.030	<0.040						
Aroclor-1260	mg/kg				NA	< 0.030	< 0.030	<0.040	NA	NA	NA	NA	<0.040	<0.040	<0.040	<0.030	<0.040	<0.040	< 0.030	<0.030	<0.040						
Volatile Organics																											
3-Octanone	mg/kg	7 000 (NI)	OO (NI)		NA NA	NA 0.060 B	NA -0.0057	NA -0.0060	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA -0.0062	NA -0.0070	NA -0.0071	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone d-Limonene	mg/kg mg/kg	7,000 {N}	92,000 {N}		NA NA	0.060 B 0.031 J	<0.0057 NA	<0.0060 NA	NA NA	NA NA	NA NA	NA NA	<0.0062 NA	<0.0070 NA	<0.0071 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Methylene Chloride	mg/kg	85 (C)	380 (C)		NA	<0.0074	<0.0057	<0.0060	NA NA	NA	NA	NA	NA NA	NA.	NA NA	NA NA	NA	NA NA	<0.0062	<0.0070	<0.0071	NA	NA	NA NA	NA	NA	NA NA
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	630 {N}	8,200 {N}		NA	< 0.0074	< 0.0057	<0.0060	NA	NA	NA	NA	<0.0062	0.00072 B	0.00083 B	NA	NA	NA	NA	NA	NA						
Semivolatile Organics																											
2,4-Dinitrotoluene	mg/kg	16 (N)	200 (N)		-0.40	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene Acenaphthylene	mg/kg mg/kg	470 {N} 230 {N}	6,100 {N} 3,100 {N}		<0.49 <0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg	2,300 (N)	31,000 (N)		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	0.22 {C}	3.9 {C}		<0.49 <0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		<0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzoic Acid	mg/kg	2.2 (0)			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 {C}	200 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	mg/kg	1,600 {N}	20,000 {N}		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	mg/kg		200 (C)		<0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg	22 {C}	390 {C}		<0.49 <0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzofuran	mg/kg				<0.49	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		0.23 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Octylphthalate	mg/kg				<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		<0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 {N} 0.22 {C}	4,100 {N} 3.9 {C}		<0.49 <0.49	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg	0.22 (0)	3.9 (C) 		<0.49	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
Phenanthrene	mg/kg	230 {N}	3,100 {N}		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		<0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
See footnotes on last page.																											

		_	ı																								
Sample Name:		Adjusted	Adjusted	Facility-Wide	IASB5B	IASB06A	IASB06B	IASB06C	IASB07A	IASB07B	IASB08A	IASB08B	IASB09A	IASB09B	IASB10A	IASB10B	IASB11A	IASB11B	IASB12A	IASB12B	IASB12C	IASB13A	IASB13B	IASB13C	IASB14A	IASB14B	IASB14C
Sample Depth (ft):	11	Soil RBC	Soil RBC	Background	0.5 - 6	0 - 0.5	4 - 6	8 - 10	0 - 0.5	4 - 6	0 - 0.5	4 - 6	0 - 0.5	4 - 6	0 - 0.5	2 - 4	0 - 0.5	2 - 4	0 - 0.5	4 - 6	8 - 10	0 - 0.5	1 - 2	2 - 4	0 - 0.5	1 - 2	2 - 4
Date Collected:	Units	(Residential)	(Industrial)	Point	08/05/98	06/10/02	06/18/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/10/02	06/18/02	06/18/02	06/11/02	06/18/02	06/18/02	06/11/02	06/18/02	06/18/02
Inorganics																											
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	16,900	33,700 J	9,510	25,600	31,200 J	23,500	29,700 J	31,800	23,400 J	20,400	20,400 J	27,200	16,900 J	24,100	21,500 J	29,400	28,300	11,000	13,000	42,900	12,400	27,600	32,200
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.710	0.240 B	<0.570 L	<0.660 L	0.390 B	<0.670 L	0.340 B	<0.660 L	0.460 L	<0.620 L	0.470 L	0.320 B	0.260 B	0.300 B	0.220 B	0.270 B	<0.710 L	0.330 B	<0.640 L	<0.710 L	0.880 L	<0.590 L	<0.710 L
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	11.9	9.24	2.65 L	9.66 L	6.29	9.02 L	8.04	10.8 L	11.8	9.96 L	6.73	6.42 L	5.33	9.59 L	6.82	21.4 L	13.5 L	0.820 J	4.36 L	9.52 L	3.55 J	5.82 L	6.12 L
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	20.3 B	37.3	35.5	25.9	31.2	66.7	34.2	24.8	189	17.1	32	48.3	48.4	16.6	48.9	15.6	15.1	107	71.6	20.3	88.7	11.8	13.8
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.99	0.75	<0.220 L	0.450 B	0.81	1.60 L	0.64	0.680 L	0.66	0.950 L	0.550 B	3.02 L	0.64	<0.260 L	< 0.630	<0.270 L	0.300 B	0.62	0.460 B	0.770 L	0.58	0.360 B	0.830 L
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.140	<0.110	<0.110	< 0.130	<0.110	< 0.130	<0.110	<0.130	0.31	<0.120	<0.120	<0.120	0.100 J	< 0.130	<0.120	<0.140	<0.140	1.15	0.0600 B	<0.140	0.27	<0.110	<0.140
Calcium	mg/kg				1,200	1,900	330	515	1,890	686	1,620	626	4,290	325	1,710	2,310	1,040	446	1,160	33.7 B	45.9	123,000	2,020	1,230	69,500	1,060	1,450
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	42.1	39.1 J	10.1	41.4	38.1 J	45	38.8 J	53.2	39.0 J	43.7	33.6 J	57	18.8 J	36.5	45.6 J	59.2	43.8	54.4 L	18.7	32.9	157 L	49.8	66.1
Cobalt	mg/kg			72.3	59.1	17.2 J	10.4 J	3.37 J	422 J	36.0 J	11.2 J	4.46 J	15.3 J	57.0 J	9.00 J	18.6 J	57.2 J	1.47 J	4.48 J	1.42 J	1.67 J	6.69 J	4.79 J	70.1 J	6.56 J	3.43 J	2.93 J
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 (N)	18.3 B	75.6 J	5.13	17.5	51.1 J	22.2	26.9 J	22.1	3,310 J	22.3	27.8 J	31.2	1,360 J	16	18.1 J	29.5	28.9	38.1	23	34	40	25.8	27.8
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	44,500	36,900	9,620	39,600	36,900	33,400	35,900	50,800	30,000	38,500	31,500	36,800	20,100	35,700	33,500	77,600	66,000	15,200	17,000	45,400	20,800	43,700	49,800
Lead	mg/kg	400	750	26.8	30.9	50.2	11.2 J	19.2 J	41.7	49.2 J	32	33.4 J	141	35.3 J	29.7	27.2 J	66.2	14.7 J	22.2	20.7 J	23.9 J	458	23.6 J	116	1,480	24.3 J	29.0 J
Magnesium	mg/kg				813 B	1,430	426	543	1,850	8,060	1,560	680	4,540	890	1,150	16,700	2,960	385	769	234	218	69,700	1,130	689	41,200	652	767
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	254	213 J	199	30.5	2,510 J	504	79.8 J	38.1	190 J	183	163 J	476	752 J	53.9	270 J	33.3	37.3	180	356	960	225	54.1	60.5
Mercury	mg/kg	2.35	30.66	0.13	<0.130	0.07	0.0300 J	0.11	0.06	0.1	0.08	0.12	0.13	0.06	0.08	0.07	0.0500 J	0.1	0.07	0.0300 J	< 0.0700	< 0.0500	0.0300 J	0.08	0.0500 J	0.0300 J	0.11
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	14.5	26.1	5.37	12.7	29.5	39.6	17	15.7	29	20.6	12.7	51.3	19.6	10.7	8.46	11	12.9	11.8	8.7	25.9	12.2	19.8	22
Potassium	mg/kg				561 B	909	333 J	496	849	3,250	753	514	860	559	563	3,290	795	231 J	563	368 J	288 J	3,350	341 J	509	2,310	441	511
Selenium	mg/kg	39.1 {N}	511 {N}		<0.710	<1.13 L	0.770 L	<1.34 L	<1.18 L	0.660 L	0.430 L	0.580 L	0.480 L	0.730 L	<1.23 L	<1.27 L	<1.21 L	<1.31 L	<1.26 L	<1.40 L	0.560 L	<1.08	<1.30 L	0.610 L	<1.08	<1.19 L	<1.44 L
Silver	mg/kg	39.1 {N}	511 {N}		<0.290	<1.13	<1.14	<1.34	<1.18	<1.35	<1.19	<1.34	0.700 J	<1.25	<1.23	<1.27	<1.21	<1.31	<1.26	<1.40	<1.42	<1.08	<1.30	<1.42	<1.08	<1.19	<1.44
Sodium	mg/kg				96.0 B	16.7 B	24.9 B	16.4 B	18.2 B	17.1 B	12.6 B	12.9 B	21.0 B	7.66 B	11.9 B	20.0 B	11.6 B	7.68 B	12.2 B	6.84 B	17.5 B	143 J	10.2 B	7.16 B	88.1 J	6.28 B	7.19 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.290	0.280 J	0.140 J	0.270 J	0.250 J	0.45	0.230 J	0.290 J	0.290 J	0.280 J	0.190 J	0.44	0.290 J	0.390 J	0.120 J	0.210 J	0.220 J	0.200 J	0.190 J	0.8	0.160 J	0.160 J	0.250 J
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	64.2	59.2	18.7	62.5	63.2	48.8	60.3	86.7	50.2	62.9	54.3	59.9	33.7	59.9	62.9	97.6	78.1	24.3	32	80.7	30.7	76.6	90.6
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 (N)	33.5 B	193 J	15.7	17.2	53.3 J	22.5	44.9 J	28.8	526 J	22.6	38.7 J	38.3	75.4 J	16.1	42.7 J	28.7	29.5	160 J	25.5	40.1	264 J	44.5	47.2
Miscellaneous																											
pH	pH Units				NA	6.17 J	NA																				
Total Organic Carbon	mg/kg				NA	17,500 K	NA																				

See footnotes on last page.

G:\Prigots\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables\Tables\Tables\Tables-reformatted

							1	1	1	1	1	1	1	1		Т	1	1		
Sample Name: Sample Depth (ft):		Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide Background	IASB15A 0 - 0.5	IASB15B 1 - 2	IASB15C 2 - 4	IASS01 0 - 0.5	IASS02 0 - 0.5	IASS03 0 - 0.5	IASS04 0 - 0.5	IASS05 0 - 0.5	IATR01 0 - 0.5	IATR02 0 - 0.5	IATR03 0 - 0.5	IATR04 0 - 0.5	IATR05 0 - 0.5	IATR06 0 - 0.5	IATR07 0 - 0.5	IATR08 0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/11/02	06/18/02	06/18/02	06/10/02	06/10/02	06/10/02	06/10/02	06/10/02	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02	06/20/02
Asbesos	· · · · · ·	()	(madema)		00/11/02	00/10/02	00/10/02	00/10/02	00/10/02	00/10/02	00/10/02	00,.0,02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00,20,02
Chrysotile	%ASB				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dioxin/Furan								Į.	Į.							Į.		!		
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD OCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDDs	mg/kg				NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives																				
4-Amino-2,6-Dinitrotoluene	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.05 K	NA							
Nitroglycerine	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.57	NA							
Herbicides		1		1	N 1 A	NIA	NIA			NIA	N I A			L		N 1 A	N.A.		NIA.	
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides 4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	mg/kg	1.9 (C)	0.4 (C) 		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin	mg/kg	2.4 {N}	31 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																				
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA	NA	NA	NA	NA	0.0019 B	0.0048	0.0032 B	NA							
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	NA	NA	NA	NA	<0.0021	<0.0022	0.015 B	NA							
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA	NA	NA NA	NA NA	NA NA	<0.0021	0.0012 J	<0.0021	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene Benzo(a)anthracene	mg/kg mg/kg	2,300 {N} 0.22 {C}	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	<0.0021 0.0052	0.0013 J 0.01	0.028	NA NA							
Benzo(a)pyrene	mg/kg	0.22 {C} 0.022 {C}	0.39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	0.0052	0.01	0.07	NA NA							
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 (C)		NA	NA	NA	NA	NA	0.013	0.024	0.099	NA							
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	0.0071	0.018	0.031	NA							
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	NA	NA	NA	0.0039	0.0056	0.029	NA							
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	0.0073	0.013	0.056	NA							
Dibenzo(a,h)anthracen€	mg/kg				NA	NA	NA	NA	NA	<0.0021	0.0024	0.0078	NA							
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA NA	NA	NA NA	NA NA	NA NA	0.013	0.022 0.00097 J	0.16	NA NA							
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 {N} 0.22 {C}	4,100 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	<0.0021 0.0056 J	0.00097 J	0.013 0.037 J	NA NA							
Naphthalene	mg/kg	0.22 (0)	3.9 (0)		NA NA	NA	NA	NA	NA	0.0030 3 0.0014 B	0.0033 B	0.0045 B	NA	NA NA	NA	NA	NA	NA	NA NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	0.0078	0.0099	0.14	NA							
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	0.014	0.019	0.12	NA							
PCBs																				
Aroclor-1254	mg/kg	0.16 {C}	1.4 {C}		0.040	<0.040	<0.040	NA	NA	NA	NA	12	<0.030	<0.040	<0.040	<0.040	<0.030	<0.030	<0.030	<0.030
Aroclor-1260 Volatile Organics	mg/kg				<0.030	<0.040	<0.040	NA	NA	NA	NA	<0.040	<0.030	<0.040	<0.040	<0.040	<0.030	<0.030	0.40	<0.030
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.013 J	NA							
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA	NA	0.032 B	NA							
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 (C)	380 (C)		NA	NA	NA	NA	NA	NA	NA	< 0.0073	NA							
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	630 {N}	8,200 {N}		NA	NA	NA	NA	NA	NA	NA	<0.0073	NA							
Semivolatile Organics 2.4-Dinitrotoluene	ma/l:~	16 (NI)	200 (N)		NI A	N/A	N/A	NIA	NIA.	NI A	NA	-0 04	NA	I NIA	NIA.	N1A	NI A	I NIA	NA	NA
Acenaphthene	mg/kg mg/kg	16 (N) 470 (N)	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.21 0.095 J	NA NA							
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA NA	NA	NA	NA	NA	NA	NA	<0.21	NA	NA NA	NA	NA	NA	NA	NA NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 (N)		NA	NA	NA	NA	NA	NA	NA	0.16 J	NA							
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	0.39	NA							
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	0.35	NA							
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.49	NA NA							
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	2.2 {C}	39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.24 0.19 J	NA NA							
Benzoic Acid	mg/kg	2.2 {U}	39 {C} 		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.19 J 0.27 B	NA NA							
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		NA	NA	NA	NA	NA	NA	NA	0.18 B	NA							
Butylbenzylphthalate	mg/kg	1,600 {N}	20,000 {N}		NA	NA	NA	NA	NA	NA	NA	<0.21	NA							
Carbazole	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.11 J	NA							
Chrysene	mg/kg	22 {C}	390 {C}		NA	NA	NA	NA NA	NA	NA	NA	0.39	NA	NA	NA	NA NA	NA	NA	NA NA	NA
Dibenzo(a,h)anthracenε Dibenzofuran	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.078 J	NA NA							
Dibenzoturan Diethylphthalate	mg/kg mg/kg	6,300 {N}	82,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.031 J <0.21	NA NA							
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.31 B	NA NA							
Di-n-Octylphthalate	mg/kg				NA NA	NA NA	NA	NA	NA	NA	NA	<0.21	NA	NA NA	NA	NA	NA	NA	NA NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	0.94 L	NA							
Fluorene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	0.079 J	NA							
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	0.29	NA							
Naphthalene	mg/kg				NA	NA	NA	NA	NA	NA	NA	0.015 J	NA							
Phenanthrene Pyrene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.69 L	NA NA							
	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	0.67	NA							

See footnotes on last page.

Historical Soil Sampling Results, Igniter Assembly Area New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Sample Depth (ft): Date Collected:	Units	Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide Background	IASB15A 0 - 0.5 06/11/02	IASB15B 1 - 2 06/18/02	IASB15C 2 - 4 06/18/02	IASS01 0 - 0.5 06/10/02	IASS02 0 - 0.5 06/10/02	IASS03 0 - 0.5 06/10/02	IASS04 0 - 0.5 06/10/02	IASS05 0 - 0.5 06/10/02	IATR01 0 - 0.5 06/20/02	IATR02 0 - 0.5 06/20/02	IATR03 0 - 0.5 06/20/02	IATR04 0 - 0.5 06/20/02	IATR05 0 - 0.5 06/20/02	IATR06 0 - 0.5 06/20/02	IATR07 0 - 0.5 06/20/02	IATR08 0 - 0.5 06/20/02
Inorganics	Ullits	(Residential)	(Industrial)	Point	00/11/02	00/10/02	00/10/02	00/10/02	00/10/02	00/10/02	00/10/02	00/10/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02
Aluminum	ma/ka	7,800 {N}	100,000 {N}	40,041	12.700	33.000	30,200	32.700 J	24.200 J	28.200 J	16.900 J	26.500 J	NA							
Antimony	mg/kg	3.13 {N}	40.88 {N}	40,041	0.310 B	<0.650 L	<0.690 L	0.240 B	0.580 L	0.310 B	0.350 B	<0.600 L	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	0.550 J	8.67 L	6.27 L	8.33	8.33	8.02	8.66	8.35	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	56.6	48.4	19	42.6	72.9	159	277	38.8	NA NA	NA	NA	NA	NA	NA	NA	NA NA
Beryllium	mg/kg	1,504 (N)	204.4 {N}	1.02 {N}	0.63	0.480 B	0.730 L	0.390 B	0.480 B	0.83	0.67	0.560 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.5	<0.130	<0.140	<0.120	<0.120	0.03	0.38	<0.120	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Calcium	mg/kg	3.9 (14)	31.1 (N)	0.09 (14)	105.000	1.240	1.440	3,170	1,900	2,140	1.420	807	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	57.4 L	38	34.8	40.5 J	36.8 J	28.0 J	29.1 J	41.9 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cobalt	mg/kg	25.5 (14)		72.3	7.70 J	5.96 J	4.20 J	5.29 J	8.73 J	22.7 J	14.6 J	6.97 J	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	32.6	61.4	31.5	45.3 J	97.2 J	164 J	661 J	18.7 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	mg/kg	2,346 {N}	30,660 (N)	50,962 {N}	15.900	39,100	45,300	34,800	32.000	23,100	16,700	32,600	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
Iron Lead	<u> </u>	400	750	26.8	476	127	41.7 J	30.2	49.1	95.6	144	31.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	mg/kg				63,200	923	825	1.530	1.330	3.330	4.110	895		NA NA						
Magnesium Manganese	mg/kg mg/kg	156.4 {N}	2.044 {N}	2.543 {N}	174	166	100	75.5 J	1,330 125 J	621 J	4,110 452 J	219 J	NA NA							
Mercury	mg/kg	2.35	30.66	0.13	<0.0500	0.08	0.85	0.09	0.1	0.1	0.0500 J	0.08	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	12.9	21.8	20	17.2	14.9	21.7	17.4	17.2	NA NA							
Potassium	ma/ka	. ,	2,044 (11)	` ,	3,950	658	491	809	847	1.080	863	817	NA NA							
Selenium	mg/kg	39.1 {N}	511 {N}		<1.10	0.480 L	<1.40 L	<1.26 L	<1.24 L	<1.21 L	<1.32 L	<1.22 L	NA NA							
Silver	mg/kg	39.1 {N}	511 (N)		<1.10	<1.31	<1.40 L	<1.26	<1.24 L	<1.21	<1.32	<1.22 L	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Sodium	mg/kg				133 J	13.9 B	9.24 B	22.0 B	14.9 B	22.2 B	18.2 B	12.7 B	NA NA	NA	NA	NA	NA	NA	NA	NA NA
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.130 J	0.280 J	0.300 J	0.350 J	0.180 J	0.250 J	0.250 J	0.150 J	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA.	NA.
Vanadium	mg/kg	7.8 (N)	102.2 {N}	108 (N)	27.4	71.1	77.9	61.6	56.7	44.8	34	56.4	NA							
Zinc	ma/ka	2.346 (N)	30.660 {N}	202 {N}	277 J	79.5	47.0	48.2 J	88.1 J	232 J	670 J	87.9 J	NA							
Miscellaneous	3,9	, , , , , , , , , , , , , , , , , , , ,	, ()	. ((-)																
На	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RBC Risk Based Concentration.

{C} {N} Carcinogen.

Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated

B (Organics) Constituent was detected in the associated method blank

Constituent concentration quantified as estimated Estimated concentration bias high. Estimated concentration bias low.

NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential)

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial)

3,980 Inorganics constituent concentration exceeds Background Point Estimate
Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide
Background Study Report, IT Corporation, 2001.

Table 3-9Historical Sediment Sampling Results, Igniter Assembly Area
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Sample Depth (ft): Date Collected:	Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	IASD04 0 - 0.5 06/18/02	IASD05 0 - 0.5 06/19/02	IASD06 0 - 0.5 06/19/02	IASD07 0 - 0.5 06/19/02	IASD08 0 - 0.5 06/19/02	IASD09 0 - 0.5 06/19/02	IASD10 0 - 0.5 06/19/02	IASD11 0 - 0.5 06/19/02	IASD12 0 - 0.5 06/19/02
Explosives													
1,3,5-Trinitrobenzene	mg/kg				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.07 J	<0.1
4-Amino-2,6-Dinitrotoluene	mg/kg				<0.2	0.04 J	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Herbicides	0 0								· ·				
None Detected												NA	
Organochlorine Pesticides													
4,4'-DDD	mg/kg	2.7 (C)	12 {C}		0.00111	<0.00086	0.00079 J	0.00068 J	0.00248	<0.00082	0.00242	NA	0.00191
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		<0.0008	0.00301	0.00066 B	0.00072 B	<0.00082	0.00074 B	< 0.00072	NA	0.00075 B
4,4'-DDT	mg/kg	1.9 (C)	8.4 {C}		0.00089 B	0.00385	0.00362	0.00386	0.0067	0.00076 B	0.00233	NA	0.00297
Alpha-Chlordane	mg/kg				0.00056 J	0.00301	<0.0008	0.00038 J	< 0.00082	<0.00082	< 0.00072	NA	<0.0008
Beta-BHC	mg/kg	0.36 (C)	1.6 {C}		<0.0008	<0.00086	<0.0008	0.00017 J	<0.00082	<0.00082	< 0.00072	NA	<0.0008
Delta-BHC	mg/kg				<0.0008	<0.00086	<0.0008	<0.0008	< 0.00082	<0.00082	0.00104	NA	<0.0008
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		0.00442	0.00151	0.00074 J	0.00108	<0.00082	0.00089	0.00909	NA	0.00061 J
Endosulfan II	mg/kg				0.00135	0.00052 J	<0.0008	0.00049 J	0.00378	0.00218	0.00123	NA	0.00038 J
Endrin	mg/kg	2.4 {N}	31 {N}		<0.0008	0.00328	0.00062 J	0.003	<0.00082	<0.00082	< 0.00072	NA	<0.0008
Endrin Ketone	mg/kg				<0.0008	0.00424	<0.0008	0.00148	<0.00082	<0.00082	0.00423	NA	<0.0008
Gamma-Chlordane	mg/kg				<0.0008	0.00408	<0.0008	0.00102	<0.00082	0.00062 J	0.00136	NA	<0.0008
Heptachlor Epoxide	mg/kg	0.07 {C}	0.31 {C}		<0.0008	<0.00086	<0.0008	<0.0008	0.00101	<0.00082	<0.00072	NA	<0.0008
Methoxychlor	mg/kg	39 (N)	510 (N)		0.00757	0.00257	0.00117	0.00107	0.0105	<0.00082	0.0122	NA	0.0027
PAHs													
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA	0.36	0.012						
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	0.0043 B	0.0014 B						
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		NA	0.0085	0.0028						
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	0.014	0.0029						
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		NA	0.06	0.018						
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	0.04	0.018						
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	0.1	0.055						
Benzo(g,h,i)perylene	mg/kg				NA	0.051	0.022						
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	0.027	0.018						
Chrysene	mg/kg	22 {C}	390 (C)		NA	0.098	0.041						
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	0.012	0.0046						
Fluoranthene	mg/kg	310 {N}	4,100 {N}		NA	0.11 L	0.074 L						
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	0.01	0.0013 J						
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	0.038	0.023						
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA	0.2	0.0082 B						
Phenanthrene	mg/kg	230 {N}	3,100 {N}		NA	0.25	0.019						
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	0.11	0.05						
PCBs													
None Detected													
Volatile Organics													
3-Octanone	mg/kg				NA	NA	NA	NA	0.012 J	NA	0.0060 J	NA	0.015 J
Acetone	mg/kg	7,000 {N}	92,000 {N}		<0.0060	<0.0059	<0.0061	0.011 B	0.033 B	0.022 B	< 0.0055	0.045 B	0.16 B
d-Limonene	mg/kg				NA	NA	NA	0.037 J	0.084 J	NA	NA	NA	NA
Semivolatile Organics													
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		0.014 J	<0.44	<0.21	0.059 J	<0.21	0.22 J	<0.19	0.32	0.0095 J
Acenaphthene	mg/kg	470 (N)	6,100 {N}		<0.21	<0.44	<0.21	<0.41	<0.21	1.0 J	<0.19	<0.21	<0.20
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<0.21	<0.44	<0.21	<0.41	<0.21	0.061 J	<0.19	<0.21	<0.20
Anthracene	mg/kg	2,300 {N}	31,000 {N}		<0.21	<0.44	<0.21	<0.41	<0.21	2.1	0.032 J	0.014 J	<0.20
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		<0.21	0.051 J	0.016 J	0.046 J	<0.21	6.9	0.25 J	0.064 J	0.020 J
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		<0.21	0.042 J	0.018 J	<0.41	<0.21	5.9	0.24 J	0.047 J	0.023 J
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 (C)		<0.21	0.072 J	0.040 J	<0.41	<0.21	11	0.37 J	0.096 J	0.053 J
Benzo(g,h,i)perylene	mg/kg				<0.21	0.12 J	<0.21	<0.41	<0.21	3.5	0.24 J	0.062 J	0.042 J
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		<0.21	0.023 J	0.011 J	<0.41	<0.21	2.6	0.099 J	0.028 J	0.021 J
Benzoic Acid	mg/kg	31,000 {N}	410,000 {N}		<1.0	<2.2	<1.0	<2.0	0.17 B	<8.2	0.13 B	0.17 B	0.16 B

Sample Name: Sample Depth (ft): Date Collected:	Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	IASD04 0 - 0.5 06/18/02	IASD05 0 - 0.5 06/19/02	IASD06 0 - 0.5 06/19/02	IASD07 0 - 0.5 06/19/02	IASD08 0 - 0.5 06/19/02	IASD09 0 - 0.5 06/19/02	IASD10 0 - 0.5 06/19/02	IASD11 0 - 0.5 06/19/02	IASD12 0 - 0.5 06/19/02
Semivolatile Organics (cont	inued)												
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.26 B	1.2 B	0.30 B	0.96 B	0.53 B	0.90 B	0.46 B	0.52 B	0.34 B
Carbazole	mg/kg	32 {C}	140 (C)		<0.21	<0.44	<0.21	<0.41	<0.21	2.4	0.032 J	0.016 J	<0.20
Chrysene	mg/kg	22 {C}	390 (C)		<0.21	0.070 J	0.034 J	0.028 J	<0.21	7.7	0.30 J	0.10 J	0.049 J
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 (C)		<0.21	< 0.44	<0.21	<0.41	<0.21	0.97 J	0.058 J	<0.21	<0.20
Dibenzofuran	mg/kg	7.8 {N}	100 {N}		<0.21	<0.44	<0.21	0.018 J	<0.21	0.74 J	<0.19	0.11 J	<0.20
Fluoranthene	mg/kg	310 (N)	4,100 {N}		0.019 J	0.10 J	0.042 J	0.039 J	0.0092 J	22 J	0.52 J	0.12 J	0.049 J
Fluorene	mg/kg	310 (N)	4,100 {N}		<0.21	< 0.44	<0.21	<0.41	<0.21	1.3 J	0.011 J	<0.21	<0.20
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		<0.21	0.060 J	<0.21	<0.41	<0.21	4.2	0.25 J	0.043 J	0.034 J
Naphthalene	mg/kg	160 (N)	2,000 {N}		0.010 J	< 0.44	<0.21	0.043 J	<0.21	0.75 J	0.0081 J	0.17 J	<0.20
Phenanthrene	mg/kg	230 (N)	3,100 {N}		0.014 J	0.051 J	0.023 J	0.053 J	<0.21 J	16 J	0.24 J	0.28 J	0.022 J
Pyrene	mg/kg	230 (N)	3,100 {N}		0.026 J	0.078 J	0.035 J	0.059 J	0.0088 J	16	0.47 J	0.11 J	0.045 J
Inorganics													
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	31,400	21,900 J	20,700 J	12,400 J	17,200 J	22,800 J	17,500 J	16,400 J	19,800 J
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.320 B	0.340 B	0.340 B	0.590 B	<0.610 L	<0.620 L	<0.540 L	<0.600 L	0.250 B
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	7.94 J	7.56 L	6.93 L	6.20 L	9.43 L	10.5 L	6.21 L	6.60 L	9.10 L
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	38.4	34.1	41.7	31.4	18.6	57.3	36.8	37.5	36.9
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.390 B	0.590 B	0.390 B	0.650 K	0.460 B	0.430 B	0.500 B	0.650 K	0.650 K
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.0800 J	0.260	0.270	0.380	<0.120	2.54	0.0800 J	<0.120	0.200
Calcium	mg/kg				24,400 J	3,330 J	40,400 J	118,000 J	1,580 J	3,200 J	2,420 J	1,150 J	4,950 J
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	36.4 J	39.9	28.4	23.5	31.2	40.4	28.5	31.2	39.0
Cobalt	mg/kg			72.3	3.90 J	14.8 J	7.69 J	5.90 J	3.50 J	6.48 J	6.99 J	15.1 J	34.5 J
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	16.7 L	31.2	18.8	10.8	14.8	27.9	16.4	30.6	32.1
Iron	mg/kg	5,500 {N}	72,000 {N}	50,962 {N}	29,600 J	42,600 J	24,100 J	15,000 J	30,800 J	37,900 J	24,700 J	30,400 J	30,600 J
Lead	mg/kg	400	750	26.8	24.6	58.9 J	884	46.4 J	19.7	61.8 J	22.9 J	53.0 J	643 J
Magnesium	mg/kg				14,400 J	2,400	30,300	77,100	743	1,400	1,320	1,420	2,630
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	102 J	337 J	217 J	107 J	69.3 J	302 J	156 J	255 J	569 J
Mercury	mg/kg	2.35	30.66	0.13	0.0900	0.0600 L	0.0500 L	0.0700 L	0.0500 L	0.0500 L	0.0300 L	0.0500 L	0.0500 L
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	12.7	18.8	13.2	9.25	7.93	14.2	13.0	16.5	19.7
Potassium	mg/kg				836	542	2,800	740	388	658	534	651	817
Selenium	mg/kg	39.1 {N}	511 {N}		<1.21 L	<1.30 L	<1.21 L	<1.20 L	<1.23 L	<1.24 L	<1.09 L	<1.21 L	0.410 L
Sodium	mg/kg				61.9	13.0 B	75.5	173	7.50 B	17.0 B	12.0 B	17.0 B	14.0 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.140 J	0.270 B	0.280 J	0.220 B	0.220 B	0.200 B	0.210 B	0.220 B	0.270 B
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	54.3 J	71.6	46.8	34.9	56.5	76.3	48.0	50.8	49.8
Zinc	mg/kg	2,346 (N)	30,660 {N}	202 {N}	49.8 J	171 J	57.5 J	52.0 J	22.7 J	1,110 J	55.7 J	99.6 J	459 J
Miscellaneous								•			•		
pH	pH Units				NA	7.2 J							
Total Organic Carbon	mg/kg				NA	15,500							

RBC Risk Based Concentration.

{C} Carcinogen.

{N} Noncarcinogen.

B (Inorganics) Constituent concentration quantified as estimated.

B (Organics) Constituent was detected in the associated method blank.

J Constituent concentration quantified as estimated.

K Estimated concentration bias high.

L Estimated concentration bias low.

NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

3,980 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Sample Name: Sample Depth (ft): Date Collected:	Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	NBGSD01 0 - 0.5 06/18/02	NBGSD02 0 - 0.5 07/14/04	NBGSD03 0 - 0.5 07/16/04	NBGSD04 0 - 0.5 07/16/04
Dioxin/Furan								
1,2,3,4,6,7,8-HpCDD	mg/kg				0.00004075	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				0.00000464	NA.	NA NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				0.00000041	NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	mg/kg				0.00000053	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDD	mg/kg mg/kg				0.00000071 0.00000141	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDF	mg/kg				0.00000141 0.00000141	NA	NA NA	NA.
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 (C)		0.00000136	NA.	NA.	NA.
1,2,3,7,8-PeCDF	mg/kg				0.00000021	NA	NA	NA
2,3,4,6,7,8-HxCDF	mg/kg				0.00000029	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				0.00000024	NA	NA	NA
2,3,7,8-TCDD	mg/kg	0.0000043 (C)	0.000019 (C)		0.00000047 J	NA	NA	NA
2,3,7,8-TCDF	mg/kg				0.00000038	NA	NA	NA
OCDD	mg/kg				0.002629 J	NA	NA	NA
OCDF	mg/kg				0.0000342 J	NA	NA NA	NA
Total HpCDDs	mg/kg mg/ka				0.00008126	NA NA	NA NA	NA NA
Total HpCDFs Total HxCDDs	mg/kg				0.00002337	NA NA	NA NA	NA NA
Total HxCDFs	mg/kg				0.000000747	NA NA	NA.	NA.
Total PeCDFs	mg/kg				0.00000336	NA.	NA.	NA.
Total TCDDs	mg/kg				0.00000114	NA	NA	NA
Total TCDFs	mg/kg				0.00000151	NA	NA	NA
Explosives		•					•	
None Detected						NA	NA	NA
Herbicides	•							
None Detected						NA	NA	NA
Organochlorine Pesticides	•							
4,4'-DDD	mg/kg	2.7 (C)	12 (C)		0.00244	NA	NA	NA
4,4'-DDE	mg/kg	1.9 (C)	8.4 (C)		0.00085 B	NA	NA	NA
4,4'-DDT	mg/kg	1.9 (C)	8.4 (C)		0.00421	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 (C)		0.00185	NA	NA	NA
Endosulfan II	mg/kg				0.00176	NA	NA	NA
PAHs								
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.0086 B	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		0.052	NA	NA	NA
Anthracene	mg/kg	2,300 (N)	31,000 {N}		0.029	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		0.19	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.21	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 (C)		0.31	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	2.2 {C}	39 (C)		0.18 0.11	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 (C)	390 (C)		0.16	NA NA	NA NA	NA.
Dibenzo(a,h)anthracene	mg/kg	0.022 (C)	0.39 (C)		0.036	NA.	NA.	NA.
Fluoranthene	mg/kg	310 (N)	4,100 (N)		0.33	NA	NA.	NA
Fluorene	mg/kg	310 (N)	4,100 {N}		0.01	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 (C)	3.9 (C)		0.18	NA	NA	NA
Naphthalene	mg/kg	160 (N)	2,000 {N}		0.0053 B	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		0.15	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		0.25	NA	NA	NA
PCBs Aroclor-1254		0.40 (0)	4.4.(0)		0.14	0.068	< 0.039	0.15
	mg/kg	0.16 (C)	1.4 (C)		0.14	0.000	<0.039	0.15
Volatile Organics None Detected						NA	NA	NA
Semivolatile Organics						INA	INA	INA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		0.040 J	NA	NA	NA
Anthracene	mg/kg	2,300 (N)	31,000 (N)		0.018 J	NA.	NA.	NA.
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		0.22	NA.	NA NA	NA NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.28	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 (C)		0.37	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				0.16 J	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		0.13 J	NA	NA	NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.18 B	NA	NA	NA
Carbazole	mg/kg	32 (C)	140 (C)		0.022 J	NA	NA	NA
		22 (C)	390 (C)		0.23	NA	NA	NA
Chrysene	mg/kg		4.400.000			NI A		
Chrysene Fluoranthene	mg/kg	310 (N)	4,100 (N)		0.37	NA NA	NA NA	NA NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 (N) 0.22 (C)	3.9 (C)		0.37 0.17 J	NA	NA	NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene	mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N)	3.9 {C} 3,100 {N}		0.37 0.17 J 0.12 J	NA NA	NA NA	NA NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 (N) 0.22 (C)	3.9 (C)		0.37 0.17 J	NA	NA	NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics	mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N}	3.9 {C} 3,100 {N} 3,100 {N}		0.37 0.17 J 0.12 J 0.34	NA NA NA	NA NA NA	NA NA NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene	mg/kg mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N)	3.9 {C} 3,100 {N}		0.37 0.17 J 0.12 J	NA NA	NA NA	NA NA
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum	mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N}	3.9 {C} 3,100 {N} 3,100 {N} 100,000 {N}		0.37 0.17 J 0.12 J 0.34	NA NA NA 21,400	NA NA NA NA	NA NA NA 13,200
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony	mg/kg mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N}	3.9 {C} 3,100 {N} 3,100 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N}	40,041 15.8 {C} 209 {N}	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4	NA NA NA 21,400 0.380 B 8.90 44.2	NA NA NA NA 19,500 1.60 B 6.80 123	NA NA NA 13,200 2.10 B 5.10 142
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Artsenic	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N}	3.9 {C} 3,100 {N} 3,100 {N} 100,000 {N} 40.88 {N} 1.91 {C}	40,041 15.8 {C}	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B	NA NA NA 21,400 0.380 B 8.90	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J	NA NA NA 13,200 2.10 B 5.10 142 0.480 J
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Artsenic Barium Berylilum Cadmium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 3.9 {N}	3.9 {C} 3,100 {N} 3,100 {N} 40.88 {N} 1.91 {C} 20,440 {N} 51.1 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 0.69 {N}	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J	NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10
Chrysene Fluoranthene Indeno(1,2,3-cd)pytene Phenanthrene Pyerne Inorganics Aluminum Antimony Arsenic Barium Beryillium Cadmium Caldium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 (C) 230 {N} 230 {N} 230 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 3.9 {N}	3.9 {C} 3.100 {N} 3,100 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 51.1 {N}	40,041 15.8 {C} 209 {N} 1.02 {N} 0.69 {N}	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3,300 J	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2,680	NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Chomium Chromium Chromium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 {N} 0.22 {C} 230 {N} 230 {N} 7,800 {N} 3.13 {N} 0.43 {C} 1,564 {N} 3.9 {N}	3.9 {C} 3,100 {N} 3,100 {N} 40.88 {N} 1.91 {C} 20,440 {N} 51.1 {N}	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 0.500 B 0.270 3,300 J 41.1 J	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2,680 38.3	NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700	NA NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151
Chrysene Fluoranthene Indeno(1,2,3-cd)pytene Phenanthrene Pyerne Inorganics Aluminum Antimony Arsenic Beryllium Calcium Chronium Cobalt	mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N)	3.9 {C} 3,100 {N} 3,100 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3,300 J 41.1 J 5.60 J	NA NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2,680 38.3 6.20	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 397 8.90	NA N
Chrysene Filoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimomy Arsenic Barium Beryflium Cadmium Calolium Chromium Cobalt Copper	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 312.9 (N)	3.9 (C) 3.100 (N) 3.100 (N) 100.000 (N) 40.88 (N) 1.91 (C) 20.440 (N) 204.4 (N) 51.1 (N) 306.6 (N) 4,088 (N)	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N)	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 0.500 B 0.270 0.300 J 41.1 J 5.60 J 22.1 L	NA NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2,680 38.3 6,20 20.5	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 39,7 8.90 41.5	NA N
Chrysene Fluoranthene Indeno(1,2,3-od)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Antenio Beryllium Calcium Chromium Cobalt Copper	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 23.5 (N) 5,500 (N)	3.9 {C} 3,100 {N} 3,100 {N} 100,000 {N} 40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 306.6 {N} 4,088 {N} 72,000 {N}	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 2.680 38.3 6.20 20.5 31,700	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 397 8.90 41.5 24,800	NA N
Chrysene Fluoranthene Indeno(1,2,3-cd)pytene Phenanthrene Pyerne Inorganics Aluminum Antimony Arsenic Barium Beryillium Cadmium Cadmium Chromium Chromium Chopper Iron Lead	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 312.9 (N)	3.9 (C) 3,100 (N) 3,100 (N) 100,000 (N) 40.88 (N) 1.91 (C) 20,440 (N) 51.1 (N) 306.6 (N) 4,088 (N) 72,000 (N)	40,041 15.8 {C} 209 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 55.6 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J 159	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 2.680 38.3 6.20 20.5 31,700	NA NA NA 19,500 1.60 B 6.80 123 0.644 J 1.70 35,700 397 8.90 41.5 24,800 3,500	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151 7.50 46.7 14,500 2,200
Chrysene Filoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Phenanthrene Pyrene Inorganics Aluminum Antimony Arsenic Barium Beryilium Cadmium Calolium Chromium Cobalt Copper Iron Lead Magnesium	mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 1,564 (N) 3,9 (N) 23.5 (N) 23.5 (N) 312.9 (N) 400	3.9 (C) 3,100 (N) 3,100 (N) 40.88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 51.1 (N) 306.6 (N) 72,000 (N) 750	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22,1 L 22,600 J 159	NA NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2.680 38.3 6.20 20.5 31,700 146 1,820	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 397 8.90 41.5 24,800 19,000	NA N
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimory Arsenic Beryllium Calcium Chromium Cobolt Cobolt Gopper Iron Lead Magnesium Manganese	mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 312.9 (N) 400 156.4 (N)	3.9 (C) 3.100 (N) 3.100 (N) 100,000 (N) 40.88 (N) 1.91 (C) 20.440 (N) 51.1 (N) 306.6 (N) 4,088 (N) 72,000 (N) 750	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 72.3 53.5 (N) 50.962 (N) 26.8 	0.37 0.17 J 0.12 J 0.34 17,900 B 5.56 J 5.50 B 0.270 3,300 J 41.1 J 5.60 J 22.1 L 22,600 J 159 2,570 J 204 J	NA NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.0830 J 2,680 38.3 6.20 20.5 31,700 146 1,820 215	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 397 8.90 41.5 24,800 3,500 19,000	NA N
Chrysene Filuranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimomy Arsenic Barium Beryllium Cadmium Calobalt Copper Iron Lead Magnesium Manganese Mercury	mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 15,6 (N) 3.9 (N) 23.5 (N) 156.4 (N) 400 156.4 (N) 2.35	3.9 (C) 3,100 (N) 3,100 (N) 40.88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 51.1 (N) 	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 55.6 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.80 J 22.1 L 22,600 J 159 2,570 J 204 J 0.070 J	NA NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 2,680 38.3 6,20 20.5 31,700 146 1,820 215 0.100	NA NA NA 19,500 1.60 B 6.80 123 0.640 J 170 35,700 39,7 8.90 41.5 24,800 19,000 334 0.0480	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 46.7 14,500 2,200 7,930 319 0.0510
Chrysene Fluoranthene Indeno(1,2,3-od)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Artsenic Barium Beryfillum Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 312.9 (N) 400 156.4 (N)	3.9 (C) 3.100 (N) 3.100 (N) 100,000 (N) 40.88 (N) 1.91 (C) 20.440 (N) 51.1 (N) 306.6 (N) 4,088 (N) 72,000 (N) 750	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J 159 2.577 J 204 J 0.0700 J	NA NA NA 21,400 0.380 B 8.90 44.2 0.670 J 0.8830 J 2.680 38.3 6.20 20.5 31,700 146 1,820 215 0.100	NA NA NA NA 19,500 1.60 B 6.80 123 0.640 J 1.70 35,700 397 8.90 41.5 24,800 3,500 19,000 334 0.0480 13.1	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151 7.50 46.7 14,500 2,200 7,930 319 0.0510
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Antimony Arsenic Barium Beryllium Cadicium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 3,9 (N) 23.5 (N) 312.9 (N) 400 156.4 (N) 2.35 156.4 (N) 2.35	3.9 (C) 3.100 (N) 3.100 (N) 100.000 (N) 40.88 (N) 1.91 (C) 20.440 (N) 20.44 (N) -1.1 (N) -1.2 (N) -1.2 (N) -1.3	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 72.3 53.5 (N) 50.962 (N) 26.8 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J 159 2.570 J 159 2.570 J 10.3	NA NA NA NA PARAMENTAL NA	NA N	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151 7.50 46.7 14,500 2,200 7,930 0.0510 10.0
Chrysene Fluoranthene Indeno(1,2,3-od)pyrene Phenanthrene Phenanthrene Pyrene Inorganics Aluminum Antimony Artsenic Barium Beryfilium Calcium Chromium Cobalt Copper Iron Lead Manganese Mercury Nickel Potassium Selenium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 15,6 (N) 3.9 (N) 23.5 (N) 156.4 (N) 400 156.4 (N) 2.35	3.9 (C) 3.100 (N) 100,000 (N) 40,88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 511 (N) 750 4,088 (N) 72,000 (N) 750 2,044 (N) 511 (N)	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 55.4 0.500 B 0.270 3,300 J 41.1 J 5.60 J 22,1 L 22,600 J 159 2,570 J 204 J 0.0700 J 10.3 999 <	NA N	NA N	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151 7.50 46.7 14,500 7,930 319 0.0510 10.0 899 <0.520
Chrysene Filoranthene Indeno(1,2,3-cd)pytene Phenanthrene Pyrene Inorganics Aluminum Antimony Arsenic Barium Baryillium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 15,6 (N) 3,9 (N) 312.9 (N) 5,500 (N) 400 156.4 (N) 2,35 156.4 (N) 2,35 156.4 (N) 2,35 156.4 (N)	3.9 (C) 3,100 (N) 100,000 (N) 100,000 (N) 40.88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 511. (N) 306.6 (N) 2,044 (N) 30.66 2,044 (N) 511 (N)	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 72.3 53.5 (N) 72.3 53.5 (N) 50.962 (N) 26.8 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 0.500 B 0.270 3,300 J 41.1 J 22,1 L 22,600 J 159 2,570 J 204 J 0,0700 J 10.3 999 <1.21 L 15.0 B	NA N	NA N	NA N
Chrysene Fluoranthene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene Inorganics Aluminum Antimony Artsenic Barium Beryillium Calcium Chromium Cobait Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Sedenium Sodium Thailium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3.13 (N) 0.43 (C) 1,564 (N) 3.9 (N) 23.5 (N) 23.5 (N) 156.4 (N) 2.35 156.4 (N) 39.1 (N) 0.548 (N)	3.9 (C) 3.100 (N) 100,000 (N) 40,88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 511 (N) 750 4,088 (N) 72,000 (N) 750 2,044 (N) 511 (N)	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 55.6 J 55.4 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J 159 2,570 J 204 J 10.3 999 <1.21 L 15.0 B	NA N	NA N	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 46.7 14,500 7,930 30.0510 10.0 899 -0.520 345 B -0.320
Chrysene Filoranthene Indeno(1,2,3-cd)pytene Phenanthrene Pyrene Inorganics Aluminum Antimony Arsenic Barium Baryillium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 15,6 (N) 3,9 (N) 312.9 (N) 5,500 (N) 400 156.4 (N) 2,35 156.4 (N) 2,35 156.4 (N) 2,35 156.4 (N)	3.9 (C) 3.100 (N) 100,000 (N) 40,88 (N) 1.91 (C) 20,440 (N) 204.4 (N) 511 (N) 72,000 (N) 750 2,044 (N) 750 2,044 (N) 750 2,044 (N) 750 2,044 (N) 750 2,144 (N) 511 (N) 511 (N) 511 (N) 511 (N)	40,041 15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 72.3 53.5 (N) 72.3 53.5 (N) 50.962 (N) 26.8 	0.37 0.17 J 0.12 J 0.34 17,900 0.360 B 5.56 J 0.500 B 0.270 3,300 J 41.1 J 22,1 L 22,600 J 159 2,570 J 204 J 0,0700 J 10.3 999 <1.21 L 15.0 B	NA N	NA N	NA NA NA 13,200 2.10 B 5.10 142 0.480 J 1.10 12,200 151 7.50 46.7 14,500 2,200 319 0.0510 10.0 899 <0.520 345 B
Chrysene Fluoranthene Indeno(1,2,3-od)pytene Phenanthrene Phenanthrene Pyrene Inorganics Adminum Antimony Artsenic Barium Baryllium Calcium Chromium Cobalt Copper Iron Iron Lead Magnesium Manganese Mercury Nickel Potassium Sodium Sodium Thallium Sodium Sodium	mg/kg mg/kg	310 (N) 0.22 (C) 230 (N) 230 (N) 230 (N) 7,800 (N) 3,13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 5,500 (N) 400 156.4 (N) 2,35 156.4 (N) 156.4 (N) 2,35 156.4 (N) 7,84 (N) 7,84 (N) 7,84 (N)	3.9 (C) 3,100 (N) 3,100 (N) 100,000 (N) 40.88 (N) 1.91 (C) 20.44 (N) 51.1 (N) 1.01 (N) 204 (N) 750 20,00 (N) 750 20,04 (N) 750 20,04 (N) 750 20,04 (N) 30,66 2,044 (N) 10,11 (N) 11 (N)	40,041 	0.37 0.17 J 0.12 J 0.34 17,900 B 5.56 J 0.500 B 0.270 3.300 J 41.1 J 5.60 J 22.1 L 22,600 J 103 103 103 103 103 103 103 103	NA N	NA N	NA NA NA 13,200 2,10 B 5,10 142 0,480 J 1,10 12,200 1,50 46,7 14,500 2,200 2,200 319 0,0510 10,0 899 -0,520 345 B -0,320 2,9,0

RBC Risk Based Concentration.
(C) Carcinogen.
(N) Noncarcinogen.
B (norganics) Constituent concentration quanitified as estimated.
B (Organics)
J Constituent concentration quanitified as estimated.
E stimated concentration bias high.
L Estimated concentration bias high.
Not Analyzed.

24,400
Constituent concentration exceeds Adjusted Soil RBC (Residential).
Constituent concentration exceeds Adjusted Soil RBC (Industrial).
Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.
Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

								INC	ew River Unit, I	Radiold Allily I	- Illinaniaon i	ant, reactors,	viigiilia								
Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-01	SS-02	NBGSB1A	NBGSB1B	NBGSB1C	NBGSB2A	NBGSB2B	NBGSB3A	NBGSB3B	NBGSB4A	NBGSB4B	NBGSB5A	NBGSB5B	NBGSB6A	NBGSB6B	NBGSB7A	NBGSB7B
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0.5 - 0.7	0.5 - 0.7	0.5 - 1.5	8 - 10	53 - 55	0 - 2	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1.5	5 - 6	0 - 0.5	3.5 - 4	0 - 0.5	3.5 - 4
Date Collected:	Units	(Residential)	(Industrial)	Point	06/03/97	06/03/97	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	05/27/99	05/27/99	05/27/99	05/27/99
Dioxin/Furan					•			•	•	•			•			•	•		•	•	
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2.3.4.6.7.8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDDs	mg/kg				NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA							
Total HxCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Total PeCDDs	mg/kg				NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA
Total PeCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total TCDDs Total TCDFs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Explosives	mg/kg				INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
None Detected					NA	NA		[]	1		1	1	T	1	1	T	1	1	1	ı	
Herbicides					INA	INA		[]													
2.4.5-T	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	mg/kg	78 {N}	1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.4-DB	mg/kg	63 {N}	820 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA
Dalapon	mg/kg	230 (N)	3,100 (N)		NA.	NA NA	NA.	NA NA	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA
Dicamba	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA.	NA
MCPP	mg/kg	7.8 {N}	100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides	3 3	- ()	()		ı								ı							I	
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	mg/kg		′		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																					
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.02	<0.03	0.04	<0.03
PCBs																					
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volatile Organics																					
1,1-Dichlorethene	mg/kg	390 (N)	5,100 {N}		0.0020 J	ND	<0.0020	<0.0030 [<0.0020]	<0.0030	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0030	<0.0020 J	<0.0030	NA	<0.0025	<0.0024	<0.0023
1,2,4-Trimethylbenzene	mg/kg				NA	NA	<0.0020	<0.0020 [<0.0020]	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020 J	<0.0020	NA	<0.0021	<0.0020	<0.0020
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		NA	NA	<0.0060 J	<0.0070 [<0.0060]	<0.0070	<0.0060 J	<0.0060	R	<0.0060	<0.0060	<0.0070	R	R	NA	R	R	<0.0061
Acetone	mg/kg	7,000 {N}	92,000 {N}		0.0030 B	ND	<0.0060 J			<0.0060 J	<0.0060	<0.0060	<0.0060	<0.0060	<0.0070	<0.0060 J	<0.0070	NA	R	R	<0.0061
Benzene	mg/kg	12 {C}	52 {C}		0.0010 J	ND	<0.0010	<0.0010 [<0.0010]	1	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010 J	<0.0010	NA	<0.0013	<0.0013	<0.0012
Carbon Disulfide	mg/kg	780 (N)	10,000 {N}		NA	NA	<0.0060	<0.0070 [<0.0060]	<0.0070	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0070	<0.0060 J	<0.0070	NA	<0.0066	<0.0063	<0.0061
Chlorobenzene	mg/kg	160 {N}	2,000 {N}		0.0010 J	ND	<0.0010	<0.0020 [<0.0010]	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0010 J	<0.0020	NA NA	<0.0014	<0.0014	<0.0013
d-Limonene	mg/kg				NA 0.0000 D	NA 0.0000 D	NA 10.0010	NA	NA	NA 0.0000	NA 10.0010	NA 0.0000	NA 10.0010	NA 10.0010	NA 0.0050	NA 0.0000 I	NA 0.0040	NA NA	NA 10.0040 L	NA 10.0040 L	NA 10.0010
Methylene Chloride	mg/kg	85 {C}	380 (C)		0.0020 B	0.0020 B	<0.0010	<0.0010 [<0.0010]	<0.0010	0.0030	<0.0010	0.0030	<0.0010	<0.0010	0.0050	0.0030 J	0.0040	NA NA	<0.0013 J	<0.0013 J	<0.0012
tert-Butylbenzene	mg/kg				NA 0.0010 I	NA	<0.0010	<0.0020 [<0.0010]	<0.0020	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0010 J	<0.0020	NA NA	<0.0016	<0.0015	<0.0015
Toluene Trichloroethene	mg/kg	630 {N} 1.6 {C}	8,200 {N} 7.2 {C}		0.0010 J 0.0010 J	ND ND	<0.0020 <0.0030	<0.0020 [<0.0010]	<0.0020 <0.0040	<0.0010 <0.0030	<0.0020 <0.0030	<0.0010 <0.0030	<0.0020 <0.0030	<0.0010 <0.0030	<0.0020 <0.0040	<0.0010 J <0.0030 J	<0.0020 <0.0040	NA NA	<0.0016 <0.0034	<0.0016 <0.0032	<0.0015 <0.0031
	mg/kg	1.0 (C)	1.2 (0)		0.0010 J	טאו	<u>\0.0030</u>	<0.0040 [<0.0030]	<u>\0.0040</u>	<u>\0.0030</u>	<u>\0.0030</u>	<u>\0.0030</u>	<u>\0.0030</u>	<u>\0.0030</u>	<u>\0.0040</u>	~0.0030 J	<u>\0.0040</u>	INA	<u>\0.0034</u>	<u></u> \0.003∠	\U.UU31
Semivolatile Organics	ma/l-~	46 (0)	200 (C)		0.20 1	0.10 1	<0.20	<0.46 [<0.00]	ZO 46	0.070 1	<0.42	∠ 0.27	ZO 40	<0.20	∠0.4E	<0.20	ZO 47	0.060 1	<0.20	0.050	<0.26
bis(2-Ethylhexyl)phthalate Diethylphthalate	mg/kg	46 {C} 6,300 {N}	200 {C} 82,000 {N}		0.20 J NA	0.10 J NA	<0.39 <0.39	<0.46 [<0.38] <0.46 [<0.38]	<0.46 <0.46	0.070 J <0.38	<0.43 <0.43	<0.37 <0.37	<0.40 <0.40	<0.38 <0.38	<0.45 <0.45	<0.38 <0.38	<0.47 0.10 J	0.060 J 0.060 B	<0.39 0.050 B	0.050 0.070 B	<0.36 0.13 B
Di-n-Butylphthalate	mg/kg mg/kg	780 (N)	82,000 {N} 10,000 {N}		NA ND	0.040 J	<0.39	<0.46 [<0.38]	<0.46	<0.38	<0.43	<0.37	<0.40	0.090 J	<0.45	<0.38	<0.47	<0.37	<0.39	<0.37	<0.36
See footnotes on last page.	mg/kg	7 00 {IN}	10,000 (14)		טאו ן	0.0 4 0 J	~0.38	\U. 4 U [\U.30]	~U.4U	~ U.30	~U.43	~0.31	<u>~∪.4∪</u>	0.080.0	~∪.4 ∂	~U.30	~U.4 1	~U.31	~0.38	~0.31	~0.30
oco localotos dil last page.							I														

								_	W KIVEI OIIII, F	,		. , ,	3								
Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-01	SS-02	NBGSB1A	NBGSB1B	NBGSB1C	NBGSB2A	NBGSB2B	NBGSB3A	NBGSB3B	NBGSB4A	NBGSB4B	NBGSB5A	NBGSB5B	NBGSB6A	NBGSB6B	NBGSB7A	NBGSB7B
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0.5 - 0.7	0.5 - 0.7	0.5 - 1.5	8 - 10	53 - 55	0 - 2	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1.5	5 - 6	0.5 - 1.5	5 - 6	0 - 0.5	3.5 - 4	0 - 0.5	3.5 - 4
Date Collected:	Units	(Residential)	(Industrial)	Point	06/03/97	06/03/97	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	08/04/98	05/27/99	05/27/99	05/27/99	05/27/99
Inorganics																					
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	18,200	28,900	10,800	27,400 [22,700]	13,100	8,270	27,500	9,810	15,800	18,400	28,400	10,400	30,400	4,670	9,420	7,800	5,930
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA	NA	<0.580	<0.690 [<0.560]	< 0.670	<0.560	<0.620	<0.540	<0.590	<0.560	<0.660	<0.560	<0.680	<0.620	<0.660	<0.620	< 0.590
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	7.60	6.30	4.20 K	7.00 K [7.30 K]	9.20 K	8.50 K	10.5 K	3.20 K	4.30 K	6.00 K	8.10 K	4.50 K	17.0 K	2.20 B	5.40 B	7.00 B	6.50 B
Barium	mg/kg	1,564 {N}	20,440 {N}	209 {N}	79.3 J	80.3 J	41.0 K	18.7 B [14.0 B]	30.5 K	81.9 K	18.1 B	38.9 K	9.60 B	41.7 K	21.7 B	34.0 K	13.2 B	40.8	19.0	23.0	10.5
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.500	0.600	<0.120	0.230 J [0.190 J]	1.90	<0.110	0.330 J	0.110 J	<0.120	0.260 J	0.290 J	0.190 J	0.460 J	0.280 B	0.380 B	0.430 B	0.460 B
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	ND	0.800	<0.120	<0.140 [<0.110]	0.220 J	0.920	<0.120	<0.110	<0.120	<0.110	<0.130	<0.110	<0.140	<0.120	<0.130	<0.120	<0.120
Calcium	mg/kg				62,700	55,700	1,580 B	928 B [526 B]	857 B	4,040 B	840 B	2,570 B	371 B	1,780 B	673 B	2,800 B	469 B	637	635 J	684	529 J
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	32.2	44.2	31.8	75.3 [53.7]	35.0	1,620	53.4	20.2	21.9	30.0	42.3	16.4	52.4	7.10	22.3	22.3	19.6
Cobalt	mg/kg			72.3	7.70	7.50	4.50 K	3.50 K [3.60 K]	9.80 K	23.9 K	3.10 K	4.20 K	2.10 K	4.90 K	4.20 K	6.70 K	4.00 K	4.60 K	23.0	21.7	24.3
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	18.4	38.6	5.50 B	18.4 K [15.1 B]	21.0 K	52.7	12.9 B	9.20 B	6.20 B	11.4 B	15.6 B	4.90 B	24.2 K	8.80 K	20.9	18.2	19.3
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	28,000	26,700	18,500	45,900 [36,800]	29,700	12,900	52,000	12,100	19,200	23,300	41,900	16,100	60,600	8,270	28,800	30,100	29,600
Lead	mg/kg	400	750	26.8	55.4	199	127	226 [155]	29.5	23,400	19.5	104	10.8	76.2	20.0	19.3	20.2	16.5	13.8	17.7	12.3
Magnesium	mg/kg				28,300	26,000	605 B	719 B [557 B]	11,900	1,520 B	1,010 B	1,350 B	278 B	977 B	661 B	1,300 B	382 B	193 J	472 J	285 J	214 J
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	208	156	204	68.1 [55.1]	594	158	58.9	182	21.8 K	317	53.3	393	73.5	410	89.9	470	380
Mercury	mg/kg	2.35	30.66	0.13	NA	NA	<0.120	<0.140 [<0.110]	<0.140	<0.110	0.570	<0.110	<0.120	<0.120	<0.130	<0.110	0.620	<0.120	<0.130	<0.120	<0.120
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	13.8	17.3	3.80 B	8.90 K [8.30 K]	30.4 K	5.60 B	8.50 K	4.50 B	3.80 B	7.60 K	12.5 K	4.10 B	14.4 K	3.50 K	14.3 K	11.0 K	13.6 K
Potassium	mg/kg				2,060	2,310	352 B	601 B [516 B]	3,240 K	324 B	873 K	473 B	489 B	635 K	1,300 K	425 B	1,030 K	149 J	307 J	362 J	199 J
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	<0.580	<0.690 [<0.560]	<0.670	<0.560	<0.620	0.560 K	<0.590	<0.560	<0.660	<0.560	<0.680	0.550 K	<0.530	<0.500	<0.470
Silver	mg/kg	39.1 {N}	511 {N}		NA	NA	<0.230 L	<0.280 L [<0.220 L]	<0.270 L	0.230 B	<0.250 L	<0.220 L	<0.240 L	<0.220 L	<0.260 L	<0.220 L	<0.270 L	<0.120	<0.130	<0.120	<0.120
Sodium	mg/kg				NA	NA	136 B	146 B [116 B]	103 B	113 B	104 B	125 B	106 B	115 B	137 B	94.1 B	111 B	100 B	105 B	102 B	106 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.200	0.200	0.420 B	1.50 B [<0.220 L]	<0.270 L	0.460 B	<0.250 L	<0.220 L	<0.240 L	1.10 B	<0.260 L	0.280 B	<0.270 L	<0.860 J	<0.920 J	<0.870 J	<0.830 J
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	64.6	70.0	33.1 J	83.1 J [66.8 J]	49.5 J	23.4 J	79.1 J	21.9 J	32.1 J	39.7 J	76.4 J	27.9 J	91.0 J	14.9	37.4	51.9	45.1
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	294	1,210	61.0 B	67.4 B [50.2 B]	60.4 B	3,760	22.8 B	132 B	15.4 B	67.8 B	28.3 B	22.1 B	45.0 B	18.1	24.7	29.3	29.2
Inorganics-TCLP																					
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	μg/L	100,000*			NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	μg/L	1,000*			NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA
Chromium Lead	μg/L	5,000* 5,000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	μg/L ug/L	1.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	μg/L ua/L	5.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Miscellaneous	µy/L	3,000			INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Percent Solids	0/				NIA	NA	NA	NA NA	NA	NA	NA	NA	NA	NIA	NA	NIA	T NA	NIA	I NIA	NIA	NA
reicent Solius	pH Units				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 6.5	NA 7.4	NA 6.85	7.55
Total Organic Carbon	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.799	2.376	NA	7.55 NA
Total Organic Carbon	my/kg				INA	INA	INA	INA	INA	INA	INA	INA.	INA	INA	INA	INA	I INA	1,799	2,370	INA	INA

See footnotes on last page

								New	River Unit, Rad	dford Army Amn	nunition Plant, F	Radford, Virginia										
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB8A	NBGSB8B	NBGSB9A	NBGSB10A	NBGSB10B	NBGSB10C	NBGSB10D	NBGSB10E	NBGDW1	NBGDW2	NBGDW3	NBGDW4	NBGDW5	NBGDW6	NBGDW7	NBGDW8	NBGDW9	5
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	3.5 - 4	0 - 0.5	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	Sam
Date Collected:	Units	(Residential)	(Industrial)	Point	05/27/99	05/27/99	05/27/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	08/18/99	08/17/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	Di
Dioxin/Furan																						Dioxin/Furan
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,6,7,8-H
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,6,7,8-H
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,7,8,9-H
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,7,8-Hx
1,2,3,4,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,7,8-Hx
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,6,7,8-Hx
1,2,3,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,6,7,8-Hx
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,7,8,9-Hx
1,2,3,7,8,9-HxCDF	mg/kg				NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	1,2,3,7,8,9-Hx
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,7,8-PeCI
2,3,4,6,7,8-HxCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,7,8-PeCI 2,3,4,6,7,8-Hx
2,3,4,7,8-PeCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,3,4,0,7,8-PeCI
2,3,7,8-TCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,3,7,8-TCDF
OCDD	mg/kg				NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	OCDD
OCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	OCDF
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total HpCDDs
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total HpCDFs
Total HxCDDs	mg/kg		-		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total HxCDDs
Total HxCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total HxCDFs
Total PeCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total PeCDDs
Total PeCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total PeCDFs
Total TCDDs	mg/kg				NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total TCDDs
Total TCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total TCDFs
Explosives						T	1		1	1	1		N. A	NIA I	N.1.A	N.1.A	NIA	N. A.	N1.0	NIA.	NIA.	Explosives
None Detected					[]								NA	NA	NA	NA	NA	NA	NA	NA	NA	None Detected
Herbicides		70 (1)	4 000 (1)		N1A	1 110			1 114	1 110	1 110			NIA 1		N10		. NA	N10		NIA.	Herbicides
2,4,5-T 2,4-D	mg/kg	78 (N)	1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,4,5-T 2,4-D
2,4-DB	mg/kg	78 {N} 63 {N}	1,000 {N} 820 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,4-DB
Dalapon	mg/kg mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Dalapon
Dicamba	mg/kg	230 (N)	3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Dicamba
MCPP	mg/kg	7.8 {N}	100 (N)		NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	MCPP
Organochlorine Pesticides	99	()																				Organochlori
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,4'-DDD
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,4'-DDE
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,4'-DDT
Endrin Aldehyde	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Endrin Aldehyo
PAHs																						PAHs
Benzo(g,h,i)perylene	mg/kg				<0.03 [<0.03]	< 0.03	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Benzo(g,h,i)pe
PCBs																						PCBs
Aroclor-1254	mg/kg	0.16 {C}	1.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Aroclor-1254
Volatile Organics																						Volatile Organ
1,1-Dichlorethene	mg/kg	390 (N)	5,100 {N}		NA	<0.0023	<0.0025	<0.0026	<0.0028	<0.0028	<0.0029	<0.0028	<0.0024	NA	NA	NA	NA	NA	NA	NA	NA	1,1-Dichlorethe
1,2,4-Trimethylbenzene	mg/kg				NA	<0.0020	<0.0021	<0.0022	<0.0024	<0.0023	<0.0024	<0.0024	<0.0020	0.0056	NA	1,2,4-Trimethy						
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		NA	R	<0.0064	R	R	R	R	R	R	R	NA	2-Butanone						
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA NA	<0.0061	<0.0064	R	R	R	R	R	R	NA 10.0010	NA	Acetone						
Benzene	mg/kg	12 {C}	52 {C}		NA NA	<0.0012	<0.0013	<0.0014	<0.0015	<0.0014	<0.0015	<0.0015	<0.0012	<0.0012	NA	Benzene						
Carbon Disulfide	mg/kg	780 (N)	10,000 {N}		NA NA	R	<0.0064	<0.0068	<0.0074	<0.0072	<0.0075	<0.0074	<0.0062	NA 10.0010	NA	NA	NA	NA	NA	NA	NA NA	Carbon Disulfic
Chlorobenzene	mg/kg	160 {N}	2,000 {N}		NA NA	<0.0013	<0.0014	<0.0015	<0.0016	<0.0016	<0.0016	<0.0016	<0.0014	<0.0013	NA NA	Chlorobenzene						
d-Limonene Methylene Chloride	mg/kg	85 {C}	380 {C}		NA NA	NA <0.0012 J	NA <0.0013 J	NA <0.0014	NA <0.0015	NA <0.0014	NA <0.0015	NA <0.0015	NA <0.0012 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	d-Limonene Methylene Chl
tert-Butylbenzene	mg/kg mg/kg	00 (C) 	300 (C)		NA NA	<0.00123	<0.0015	<0.0014	<0.0015	<0.0014	<0.0015	<0.0015	<0.00123	0.0030	NA NA	tert-Butylbenze						
Toluene	mg/kg	630 {N}	8,200 {N}		NA NA	<0.0015	<0.0015	<0.0018	<0.0018	<0.0017	<0.0018	<0.0018	<0.0015	<0.0030	NA NA	Toluene						
Trichloroethene	mg/kg	1.6 {C}	7.2 {C}		NA NA	<0.0013	<0.0033	<0.0017	<0.0038	<0.0018	<0.0019	<0.0038	<0.0013	<0.0013	NA NA	Trichloroethen						
Semivolatile Organics	9/119	(0)	(0)			0.0001	0.0000	3.3000	2.3000	0.0001	3.3000	5.5000	J.JUUL	0.0001	, .	, .	, .	, 1		. */ .		Semivolatile (
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		<0.37 [<0.38]	< 0.36	0.13	<0.40	<0.44	< 0.43	<0.44	< 0.44	0.040 J	NA	NA	NA	NA	NA	NA	NA	NA	bis(2-Ethylhex
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		0.24 [<0.38]	<0.36	<0.38	<0.40	<0.44	<0.43	<0.44	<0.44	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	Diethylphthala
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		<0.37 [<0.38]	<0.36	<0.38	0.060 B	0.080 B	0.060 B	0.090 B	0.050 J	0.080 B	NA	NA	NA	NA	NA	NA	NA	NA	Di-n-Butylphth
See footnotes on last page.																				•	•	See footnotes
. •																						

										,	ilullilloli Flalit, N	,g										
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB8A	NBGSB8B	NBGSB9A	NBGSB10A	NBGSB10B	NBGSB10C	NBGSB10D	NBGSB10E	NBGDW1	NBGDW2	NBGDW3	NBGDW4	NBGDW5	NBGDW6	NBGDW7	NBGDW8	NBGDW9	S
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	3.5 - 4	0 - 0.5	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	0 - 4	Sam
Date Collected:	Units	(Residential)	(Industrial)	Point	05/27/99	05/27/99	05/27/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	08/18/99	08/17/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	Da
Inorganics																						Inorganics
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	6,150 [7,260]	5,680	5,980	22,200	31,200	26,700	30,600	29,800	NA	Aluminum								
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.590 [<0.610]	<0.610	<0.620	< 0.650	<0.700	0.800 B	<0.740	<0.740	NA	Antimony								
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	5.40 B [7.90]	6.00 B	5.60 B	10.6	15.1	16.3	14.5	17.5	NA	Arsenic								
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	39.5 [39.3]	32.6	45.6	22.5 J	15.7 J	16.4	19.2 J	20.7 J	NA	Barium								
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.580 B [0.800 B]	0.400 B	0.570 B	0.350 B	0.560 B	0.530 B	0.510 B	0.600 B	NA	Beryllium								
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.120 [0.160]	<0.120	<0.120	0.380	0.620 J	0.660 J	0.500 J	0.620 J	NA	Cadmium								
Calcium	mg/kg				1,330 [1,180]	974	1,420	1,500	343 J	826	301 J	266 J	NA	Calcium								
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	15.4 [20.3]	14.8	16.0	43.9	58.1	64.8	57.3	69.3	NA	Chromium								
Cobalt	mg/kg			72.3	26.6 [28.1]	22.3	28.0	2.30 K	5.00 K	3.50 K	3.90 K	4.10 K	NA	Cobalt								
Copper	mg/kg	312.9 (N)	4,088 {N}	53.5 {N}	18.7 [20.6]	15.5	17.5	23.5	36.3	40.4	34.4	38.2	NA	Copper								
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	21,200 [27,900]	21,800	21,300	39,500	56,500	63,100	54,500	62,300	NA	Iron								
Lead	mg/kg	400	750	26.8	24.3 [22.8]	17.6	28.4	10.4	19.6	30.3	31.2	30.9	NA	Lead								
Magnesium	mg/kg				395 J [409 J]	299 J	402 J	670	488 J	479 J	488 J	364 J	NA	Magnesium								
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	710 [709]	401	926	35.3	62.9	71.4	79.6	99.2	NA	Manganese								
Mercury	mg/kg	2.35	30.66	0.13	0.170 [<0.130]	<0.120	<0.120	0.260	0.220	0.350	0.220	<0.150	NA	Mercury								
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	12.5 K [17.4]	12.7 K	12.4 K	6.80 K	20.6	14.2 K	11.9 K	14.6 K	NA	Nickel								
Potassium	mg/kg				385 J [393 J]	178 J	378 J	684	758	861	723 J	583 J	NA	Potassium								
Selenium	mg/kg	39.1 {N}	511 {N}		<0.470 [<0.490]	<0.490	<0.490	1.30 K	<0.560	<0.580	<0.590	<0.590	NA	Selenium								
Silver	mg/kg	39.1 {N}	511 {N}		<0.120 [<0.120]	<0.120	<0.120	0.270 K	0.480 K	0.490 K	0.660 K	0.640 K	NA	Silver								
Sodium	mg/kg				100 B [98.9 B]	101 B	112 J	189	183 J	198 J	165 J	177 J	NA	Sodium								
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.830 J [<0.860 J]	0.920 J	<0.860 J	<0.910 J	<0.990 J	<1.00 J	<1.00 J	<1.00 J	NA	Thallium								
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	36.5 [44.2]	34.7	36.9	77.9	112	127	118	125	NA	Vanadium								
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	37.6 [47.6]	27.2	45.8	19.1	37.6	37.6	29.9	31.8	NA	Zinc								
Inorganics-TCLP																						Inorganics-TC
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	8.8	<6	<6	<6	<6	<6	<6	6.8	<6	Arsenic
Barium	μg/L	100,000*			NA	NA	NA	NA	NA	NA	NA	NA	601	146	233	219	272	180	238	181	239	Barium
Cadmium	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	20.7	<1	<1	<1	<1	<1	<1	<1	<1	Cadmium
Chromium	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	6.8	35.6	<1	2.3	17.4	<1	23.2	24.1	28.6	Chromium
Lead	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	6,400	43.4	11.2	93.3	34.3	35	1,920	387	1,210	Lead
Selenium	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	<4	4.9	<5	<5	<5	<5	<5	<5	5.7	Selenium
Silver	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	1.2	<1	<1	<1	<1	<1	<1	<1	<1	Silver
Miscellaneous																						Miscellaneou
Percent Solids	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Percent Solids
pH	pH Units				6.05 [7.15]	6.75	7.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	pH
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total Organic

Part											New River Uni	t, Radford Army A	mmunition Plant	t, Radford, Virgini	а						
	nple Name:		Adjusted	Adjusted	Facility-Wide	NBGDW10	NBGDW11	NBGDW12	NBGDW13	NBGSB11A	NBGSB11B	NBGSB11C	NBGSB12A	NBGSB12B	NBGSB12C	NBGSB13A	NBGSB13B	NBGSB14A	NBGSB14B	NBGSB15A	NBGSB15B
PCCC					•	-	-	-	-											0 - 0.5	1 - 3
Section Property	: Collected:	Units	(Residential)	(Industrial)	Point	08/19/99	08/19/99	08/19/99	08/19/99	06/12/02	06/19/02	06/19/02	06/12/02	06/19/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02
Section Property	ODD I		ı	1		NIA	L NIA	I NIA	NIA	0.00000004	0.00000007	0.00000000	0.0000404	0.00004440	0.00000070	0.00004000	0.00000040	0.00000400	0.00000040.1	0.00004404	0.00004750.1
Color																				0.00004404 0.00000475	0.00004759 J 0.00000795 J
Property Property		_																		<0.00000116	0.0000071 J
Page		mg/kg				NA	NA	NA	NA	<0.00000302	<0.0000018	<0.00000009	<0.00000206	<0.0000019	<0.0000002	<0.00000301	0.00000053	<0.00000216		<0.00000231	0.00000118 J
CPC														1						<0.0000127	0.00000205 J
CODD Top March CODD Top Top Top CODD Top CODD Top CODD Top CODD Top T		_																		<0.00000181	0.00000237 J
Part																				<0.00000124 <0.00000175	0.00000271 J 0.000003 J
The state The														1						<0.00000176	0.00000034 J
Fig.) n																			<0.0000185	0.00000058 J
Process														1						<0.000001	0.00000029 J
mg/kg																				<0.00000145	0.00000108 J
mg/sq		_																		<0.00000104 <0.00000151	0.00000061 J <0.00000016 J
mg/hg																	1			0.002064	0.004063 J
mg/kg																				<0.0000386	0.00000529 J
mg/kg	n	mg/kg														0.0001208 J				0.0001053	0.0001147 J
mg/kg																				0.00000475	0.00001225 J
mg/kg																				0.00001125	0.00002469 J
mg/kg		_																		<0.00000124 <0.00000185	0.00001394 J 0.00000199 J
mg/kg																				<0.00000103	0.000001993 0.00000838 J
		<u> </u>																		0.0000468	0.00000047 J
mg/kg	r	mg/kg				NA	NA	NA	NA	0.0003194 J	<0.000001	0.00001017 J	<0.0000197	<0.000001	<0.0000011	0.0001714 J	<0.00000008	0.00000725	<0.00000004	<0.00000151	0.00000731 J
mg/kg																					
mg/kg 78 N						NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
mg/kg 78 N		ma/ka	78 JNI	1 000 JNN		NΔ	NΔ	NΔ	NΔ	0.00710.1	NΔ	NΔ	<0.0121	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NA
mg/kg 63 (N) 820 (N) NA NA NA NA NA NA NA		_															1			NA NA	NA NA
mg/kg 230 (N) 3,100 (N) NA NA NA NA NA NA NA		<u> </u>																		NA	NA
mg/kg	r	mg/kg																		NA	NA
Pesticides																	1			NA	NA
mg/kg 2.7 (C) 12 (C) NA NA NA NA NA NA NA		mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	<12	NA	NA	<12.1	NA	NA	NA	NA	NA	NA	NA	NA
mg/kg		ma/ka	2.7.(C)	12 (C)		NΔ	NΔ	ΙΝΔ	ΝΔ	0 00933 1	NΔ	NΔ	0.00495 1	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NA	NA
mg/kg 1.9 (C) 8.4 (C) NA NA NA NA NA NA NA																	1			NA NA	NA NA
mg/kg 0.16 (C) 1.4 (C) NA NA NA NA NA NA NA																	1			NA	NA
mg/kg 0.16 {C} 1.4 {C} NA NA NA NA NA NA NA	r	mg/kg				NA	NA	NA	NA	<0.00798 L	NA	NA	0.00645 J	NA	NA	NA	NA	NA	NA	NA	NA
mg/kg 0.16 {C} 1.4 {C} NA NA NA NA NA NA NA			ī	1					NIA.	L NA								. NA			N. A.
Piles Mig/kg 390 (N) 5,100 (N) NA NA NA NA NA NA NA	iene n	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pine mg/kg 390 (N) 5,100 (N) NA NA NA NA NA NA N		ma/ka	0.16 (C)	1.4 {C}		NA	NA NA	NA NA	NA	3.4	0.020 J	0.070	2.5	< 0.030	<0.040	3.4	0.060	0.97	< 0.040	<0.030	<0.030
Sine mg/kg 390 {N} 5,100 {N}			5 (0)	(=)								2.3.0				J			2.0.0	2.000	
mg/kg 4,700 {N} 61,000 {N} NA NA <td></td> <td>mg/kg</td> <td>390 (N)</td> <td>5,100 (N)</td> <td></td> <td>NA</td>		mg/kg	390 (N)	5,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
mg/kg 7,000 (N) 92,000 (N) NA NA <td></td> <td>NA</td> <td>NA</td>																				NA	NA
mg/kg 12 {C} 52 {C} NA																				NA NA	NA NA
de mg/kg 780 {N} 10,000 {N} NA																				NA NA	NA NA
B mg/kg 160 {N} 2,000 {N} NA			. ,											1			1			NA NA	NA NA
mg/kg NA			. ,														1			NA NA	NA NA
ane mg/kg NA		_															1			NA	NA
mg/kg 630 {N} 8,200 {N} NA				` '																NA	NA
		0																		NA NA	NA NA
e mg/kg 1.6 {C} 7.2 {C} NA																				NA NA	NA NA
e mg/kg 1.6 {C} 7.2 {C} NA NA NA NA NA NA NA		my/kg	1.0 (C)	1.2 (0)		INA	NA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	Avi	Avi	INA
yl)phthalate mg/kg 46 {C} 200 {C} NA NA NA NA NA NA NA	<u> </u>	ma/ka	46 (C)	200 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
te mg/kg 6,300 {N} 82,000 {N} NA																				NA	NA
alate mg/kg 780 {N} 10,000 {N} NA	ate n					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
on last page.	last page.																				

											,		, rtaaiora, virgiine							
ample Name:		Adjusted	Adjusted	Facility-Wide	NBGDW10	NBGDW11	NBGDW12	NBGDW13	NBGSB11A	NBGSB11B	NBGSB11C	NBGSB12A	NBGSB12B	NBGSB12C	NBGSB13A	NBGSB13B	NBGSB14A	NBGSB14B	NBGSB15A	NBGSB15B
ple Depth (ft):		Soil RBC	Soil RBC	Background	0 - 4	0 - 4	0 - 4	0 - 4	0 - 0.5	1 - 3	3 - 5	0 - 0.5	1 - 3	3 - 5	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	1 - 3
ate Collected:	Units	(Residential)	(Industrial)	Point	08/19/99	08/19/99	08/19/99	08/19/99	06/12/02	06/19/02	06/19/02	06/12/02	06/19/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02
	mg/kg	7,800 {N}	100,000 {N}	40,041	37,000	NA	NA	25,200	13,900	15,400	34,900	12,700	24,200	26,400	14,400	12,700	26,100	23,600	15,100	13,900
	mg/kg	3.13 {N}	40.88 {N}		2.30 B	NA	NA	2.40 B	41.8 L	<0.590 L	0.320 B	0.780 L	<0.590 L	<0.670 L	22.0 L	0.220 B	2.46 L	<0.610 L	1.33 L	0.450 L
	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	14.5 K	NA	NA	8.70 K	64.1	2.61 L	14.1 L	3.31	5.87 L	11.3 L	24.1	2.35 L	9.97	5.69 L	3.78	4.14 L
	mg/kg	1,564 {N}	20,440 (N)	209 {N}	25.0 J	NA	NA	66.4	562	44.5	20.7	67.1	31.9	15.4	342	49.7	89.4	29.6	295	95.4
	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.370 J	NA	NA	0.390 J	<0.590	<0.590	0.420 B	0.450 B	<0.590	0.430 B	0.590 B	0.380 B	0.560 B	<0.610	0.640 K	0.440 B
	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.130	NA	NA	0.210 J	11.4	<0.110	<0.130	0.580	<0.110	<0.130	5.72	0.0900 J	0.870	<0.120	2.89	0.160
	mg/kg				1,190	NA	NA	3,650	28,500 J	557	684	5,420 J	731	371	17,000 J	745	9,810 J	1,190	57,800 J	46,600
	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	54.2	NA	NA	94.5	25,700 J	25.4 L	172 L	253 J	28.1 L	38.5 L	10,700 J	30.8 L	3,110 J	33.1 L	123 J	22.7 L
	mg/kg			72.3	4.40 J	NA	NA	6.80	190 J	6.20	4.00 J	6.95 J	3.90 J	4.60 J	80.4 J	5.90 J	26.1 J	2.20 J	8.85 J	7.61
	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	26.4	NA	NA	24.5	569 L	4.63	29.0	43.6 L	10.8	25.7	307 L	6.21	218 L	12.7	58.7 L	36.2
	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	51,100	NA	NA	29,100	59,800 J	14,500 J	50,500 J	15,200 J	24,300 J	38,900 J	24,900 J	13,200 J	31,600 J	27,100 J	17,500 J	14,300 J
	mg/kg	400	750	26.8	20.7	NA	NA	707	91,400 K	63.6	903	3,640 K	12.0	20.9	65,300 K	82.7	20,500 K	30.4	1,200 K	82.0
	mg/kg				953	NA	NA	2,110	12,100	648	655	3,220	794	801	9,500	545	5,650	708	30,700	25,200
	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	95.5	NA	NA	281	855 J	323	62.9	328 J	50.4	61.2	469 J	203	168 J	55.2	264 J	316
	mg/kg	2.35	30.66	0.13	0.270	NA	NA	<0.120	<0.0500	0.0300 J	0.200	0.0400 J	0.0700	0.220	0.0400 J	0.0300 J	0.0500 J	0.0700	0.0700	0.0200 J
	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	12.2	NA	NA	10.7	39.6	8.16	15.3	7.12	10.4	20.8	16.7	7.24	17.8	7.78	11.9	10.6
	mg/kg				964	NA	NA	812	1,270	476	798	663	865	981	1,010	400	1,790	607	2,060	1,830
	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	<1.20 L	<1.19 L	<1.34 L	<1.21 L	<1.19 L	<1.35 L	<1.19 L	<1.22 L	<1.20 L	<1.22 L	<1.15 L	<1.17 L
	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	2.74 L	<1.19	<1.34	<1.21 L	<1.19	<1.35	1.27 L	<1.22	<1.20 L	<1.22	<1.15 L	<1.17
	mg/kg				88.7 B	NA	NA	133 J	273	14.0 B	11.0 B	33.5	18.0 B	11.0 B	117	12.0 B	55.0	11.0 B	87.8	66.3
	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	NA	NA	NA	NA	0.270 J	0.110 J	0.230 J	0.180 J	0.140 J	0.220 J	0.220 J	0.140 J	0.190 J	0.170 J	0.150 J	0.130 J
	mg/kg	7.8 {N}	102.2 {N}	108 {N}	97.4	NA	NA	57.6	121 J	29.2 L	74.7 L	29.1 J	44.8 L	69.0 L	70.4 J	28.5 L	62.0 J	48.8 L	34.4 J	29.6 L
	mg/kg	2,346 {N}	30,660 {N}	202 {N}	35.4	NA	NA	706	39,000 J	22.8 J	211 J	1,280 J	18.2 J	32.0 J	19,600 J	64.8 J	3,570 J	18.5 J	3,820 J	129 J
CLP																				
	μg/L	5,000*			<6	<6	<6	<6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	μg/L	100,000*			118	564	140	474	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	μg/L	1,000*			<1	11.5	<1	5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	μg/L	5,000*			1.3	69.5	19.2	133	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA
	μg/L	5,000*			29.9	63,300	384	5,100	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA
	μg/L	1,000*			<5	<5	<5	<5	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	μg/L	5,000*			<1	<1	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S	0/				NIA.	NIA.	NIA.			NI A	NIA	NIA	l bia '	N10			N10	NIA.	.	N10
-	%				NA	NA	NA	NA	NA	NA NA	NA	NA C 00 I	NA NA	NA 4 CO L	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Carbon	pH Units				NA NA	6.82 J 29,100 K	NA NA	4.68 J 1.200 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Carbon	mg/kg				INA	INA	INA	NA	NA	INA	NA	29, 100 K	INA	1,∠00 J	INA	NA	NA	INA	INA	INA

on last page

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-11 through 3-12.NBG Tables-reformatted

Page 6 of 12

Sense Desput Disco. **Productional Control Productional										River Unit, Radfo										
Procession Company C	Sample Name:		•		Facility-Wide	NBGSB16A	NBGSB16B	NBGSB16C	NBGSB16D	NBGSB17A	NBGSB17B	NBGSB18A	NBGSB18B	NBGSB19A	NBGSB19B	NBGSB20A	NBGSB20B	NBGSB20C	NBGSB20D	NBGSB21A
Section Part Section Part Section				Soil RBC	_			-									-		-	
1.2 1.2	Date Collected:	Units	(Residential)	(Industrial)	Point	06/12/02	06/19/02	06/19/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04
1.500 1.50	Dioxin/Furan																			
13.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1,2,3,4,6,7,8-HpCDD	mg/kg				0.00003343	0.00000222	0.00000219	0.00000528	0.00001618	0.00000501	0.00002162	0.00000852 J	0.0001025	0.00000466	NA	NA	NA	NA	NA
13.41 14.45 15.4	1,2,3,4,6,7,8-HpCDF	mg/kg																		
2.4.7.2 Person																				
2.41 2.41																				
23.47 FARCETY																				
1.2.7.2.6.1916.CO																				
2.47.24 2.47.25 2.47																				
1.4.2.7.2.FCCC mphg				, ,																
1.2.7.3.4.7.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0																				
23.4.6.7.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1,2,3,7,8-PeCDF																			
13-47-15 Per 17-15	2,3,4,6,7,8-HxCDF																	NA		
Company Comp	2,3,4,7,8-PeCDF					<0.0000074	<0.00000006	<0.0000007	<0.00000009	<0.00000087	<0.0000003	<0.00000079	<0.0000004	<0.0000008	<0.0000005	NA	NA	NA	NA	NA
Company Comp	2,3,7,8-TCDF	mg/kg				<0.00000119	<0.00000008	<0.000001	<0.0000011	<0.00000129	<0.00000003	<0.00000107	<0.0000003	<0.0000119	<0.00000003	NA	NA	NA	NA	NA
	OCDD																			
	OCDF																			
Page																				
Company Comp																				
Production																				
Page																				
1																				
Color Colo																				
Second S	Total TCDFs																			
National	Explosives	0 0						J.				Į.					I.		I.	
2.45-1	None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2.4-D	Herbicides							•			•	•				•	•		•	
24-DB	2,4,5-T	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	<0.0116	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Deligion mg/kg 20 (N) 3.100 (N) NA NA NA NA NA NA	2,4-D	mg/kg	78 (N)																	
Discriming mg/kg 7.8 (N) 3.100 (N) NA NA NA NA NA NA NA																				
Margane Marg	-																			
A-F-DDD		mg/kg	7.0 (IN)	100 {IN}		NA	INA	INA	INA	3.3 J	NA.	INA	INA	INA	NA	INA	INA	NA	INA	INA
14-DDE		ma/ka	27(0)	12 (C)		NIA	NΙΔ	I NA	NA	<0.00772	l NA	NIA	NΙΛ	NIA	NIA	I NIA	NIA	NIA	NIA	NA
1.4-DDT																				
Indign Alebyde			. ,	,																
Alts			. ,																	
CBS* **Color:1254	PAHs	0 0						J.				Į.					I.		I.	
Note	Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	PCBs							·			•									
1.1-Dichlorethene mg/kg 390 (N) 5,100 (N) NA NA NA NA NA NA NA	Aroclor-1254	mg/kg	0.16 {C}	1.4 {C}		<0.030	<0.030	<0.040	<0.040	<0.030	<0.040	<0.040	<0.040	<0.040	<0.040	0.23	<0.043	<0.046	<0.048	1.3
1.2.4-Trimethylbenzene	Volatile Organics																			
Petitione Mg/kg 4,700 (N) 61,000 (N) NA NA NA NA NA NA N	1,1-Dichlorethene	mg/kg	390 {N}	5,100 {N}																
Acetone mg/kg 7,000 (N) 92,000 (N) NA	1,2,4-Trimethylbenzene																			
Senzene mg/kg 12 (C) 52 (C) NA NA NA NA NA NA NA	2-Butanone											1.1								
Carbon Disulfide	Acetone																			
Chlorobenzene mg/kg 160 (N) 2,000 (N) NA NA NA NA NA NA NA O.0046 <0.0054 <0.0064 <0.0067 <0.0054 <0.0066 NA																				
H-Limonene mg/kg NA																				
Methylene Chloride mg/kg 85 {C} 380 {C} NA			, ,																	
ert-Butylbenzene mg/kg NA	Methylene Chloride																			
Foluene	tert-Butylbenzene		` '	• • •																
Frichloroethene mg/kg 1.6 (C) 7.2 (C) NA NA NA NA NA NA NA	Toluene																			
Dis(2-Ethylhexyl)phthalate mg/kg 46 {C} 200 {C} NA	Trichloroethene																			
Diethylphthalate mg/kg 6,300 {N} 82,000 {N} NA	Semivolatile Organics																			
Di-n-Butylphthalate mg/kg 780 (N) 10,000 (N) NA	bis(2-Ethylhexyl)phthalate	mg/kg										NA	NA	NA						NA
	Diethylphthalate																			
see rootnotes on last page.	Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	See rootnotes on last page.																			

									Tivor Onit, radio			, ,							
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB16A	NBGSB16B	NBGSB16C	NBGSB16D	NBGSB17A	NBGSB17B	NBGSB18A	NBGSB18B	NBGSB19A	NBGSB19B	NBGSB20A	NBGSB20B	NBGSB20C	NBGSB20D	NBGSB21A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	2	6	10 - 12	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	1 - 3	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/12/02	06/19/02	06/19/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	06/12/02	06/19/02	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04
Inorganics																			
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	15,500	13,900	24,400	36,500	19,700	18,800	35,500	59,500	21,300	47,600	15,000	33,000	51,400	48,800	17,000
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.470 L	<0.570 L	<0.600 L	<0.690 L	0.370 B	0.270 B	<0.630 L	<0.670 L	<0.600 L	0.410 B	<3.30 L	< 0.320	0.820 J	< 0.670	<5.70
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	2.25	5.38 L	6.28 L	7.75 L	5.92	8.20 L	8.37	10.4 L	4.73	16.5 J	6.80 J	10.4	16.1	17.5	<6.60
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	52.5	20.9	28.3	32.5	65.9	15.7	21.4	31.3	58.0	26.3	90.6	20.6	22.8	20.6	176
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.480 B	<0.570	<0.600	<0.690	<0.570	<0.600	0.490 B	0.520 B	0.460 B	<0.650	0.540	0.450	0.720	0.780	0.540
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.140	<0.110	<0.120	<0.140	<0.110	<0.120	<0.120	<0.130	<0.120	<0.130	0.760	0.450 J	0.780	0.750 J	2.40
Calcium	mg/kg				41,600 J	228	358	164	75,100 J	649	670 J	344	39,300 J	690 J	14,600	545	277	79.2 J	21,800
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	118 J	21.9 L	32.4 L	58.4 L	29.3 J	68.8 L	44.5 J	54.9 L	28.4 J	51.2	1,000	42.6	54.8	55.8	1,090
Cobalt	mg/kg			72.3	7.01 J	1.90 J	2.10 J	3.60 J	7.34 J	2.60 J	3.40 J	5.20 J	5.60 J	3.80 J	14.6	3.00	6.80	6.60	17.8
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 (N)	13.2 L	4.44	10.9	23.8	14.8 L	11.1	22.0 L	27.5	16.3 L	23.6	43.0	17.3	30.8	29.0	69.5
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	13,300 J	13,400 J	25,200 J	40,800 J	17,600 J	29,800 J	44,800 J	52,300 J	21,200 J	45,500	19,500	39,400	55,200	55,600	20,300
Lead	mg/kg	400	750	26.8	931 K	13.5	14.0	25.7	38.9 K	16.2	21.5 K	25.1	36.2 K	23.2	11,200	15.9	34.0	40.1	16,500
Magnesium	mg/kg				29,200	347	529	1,450	38,100	492	723	800	29,700	659	5,530 J	690 J	755 J	669 J	11,300 J
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	250 J	19.5	23.0	50.4	144 J	148	64.3 J	83.8	161 J	74.1	499	55.1	135	156	422
Mercury	mg/kg	2.35	30.66	0.13	0.0400 J	0.0400 J	0.0800	0.0700	0.0400 J	0.0900	0.130	0.270	0.0400 J	0.170 K	0.0450	0.170	0.160	0.130	0.0390
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	11.1	3.20 J	8.47	15.0	11.1	4.93	17.9	27.0	12.9	22.2	11.0	11.3	24.2	25.5	10.8
Potassium	mg/kg				1,990	416	579	1,250	2,930	496	835	1,400	2,140	1,190	827 K	878	1,250	969	1,050
Selenium	mg/kg	39.1 {N}	511 {N}		<1.16 L	<1.15 L	<1.21 L	<1.40 L	<1.16 L	<1.20 L	<1.28 L	<1.34 L	<1.20 L	<1.32 L	< 0.630	1.20 J	1.30 J	<1.30	<0.560
Silver	mg/kg	39.1 {N}	511 {N}		<1.16 L	<1.15	<1.21	<1.40	<1.16 L	<1.20	<1.28 L	<1.34	<1.20 L	<1.32	<0.130	<0.130	<0.140	<0.260	<0.110
Sodium	mg/kg				89.2	7.50 B	16.0 B	22.0 B	115	9.30 B	23.0 B	24.0 B	85.4	22.0 B	390 B	70.2 B	72.1 B	79.1 B	937 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.150 J	0.100 J	0.200 J	0.230 J	0.140 J	0.110 J	0.210 J	0.210 J	0.190 J	0.300 J	0.630 J	<0.380	<0.420	<0.790	<6.80
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	27.1 J	24.7 L	42.3 L	78.2 L	36.7 J	50.4 L	76.0 J	94.8 L	41.5 J	81.1 J	34.6	78.1	103	96.6	35.9
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	464 J	7.87 J	16.7 J	26.0 J	143 J	19.2 J	34.9 J	40.8 J	78.6 J	40.3 J	1,700	19.7	31.9	31.1	6,090
Inorganics-TCLP																			
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	μg/L	100,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	μg/L	1,000*			NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA						
Silver	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous	٥,																		
Percent Solids	<u> </u>				NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	84	78	72	70	83
pH	pH Units				NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

									New River Unit	, Radford Army	Ammunition Pla	ant, Radford, Vii	rginia							
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB21B	NBGSB21C	NBGSB21D	NBGSB22A	NBGSB22B	NBGSB22C	NBGSB22D	NBGSB23A	NBGSB23B	NBGSB23C	NBGSB23D	NBGSB24A	NBGSB24B	NBGSB24C	NBGSB24D	NBGSB25A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04
Dioxin/Furan																				
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	mg/kg mg/kg	0.0001 {C}	0.00046 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PeCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PeCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDFs	mg/kg				NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Total PeCDDs	mg/kg				NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Total PeCDFs	mg/kg				NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
Total TCDDs Total TCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Explosives	mg/kg				NA	INA	INA	NA	NA	INA	NA	NA	NA	INA	NA	NA	INA	NA	INA	INA
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides					INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
2,4,5-T	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	mg/kg	78 (N)	1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DB	mg/kg	63 {N}	820 (N)		NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA
Dalapon	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dicamba	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MCPP	mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides																				
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																				
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs		0.40.(0)	4.4.00		10.011	0.10	10.011	4.0	10.000	10.011	10.010	10.000	-0.040	10.010	10.010	0.44	10.010	40.000	40.000	0.50
Aroclor-1254	mg/kg	0.16 {C}	1.4 {C}		<0.041	0.18	<0.044	4.6	<0.039	<0.041	<0.046	<0.039	<0.040	<0.040	<0.040	0.14	<0.040	<0.039	<0.039	0.56
Volatile Organics	malle	200 (N)	E 100 (NI)		NIA	NI A	N/A	NIA	NIA.	NIA	NI A	NIA	NIA	NIA	NIA	NIA	NIA	N/A	N/A	NIA
1,1-Dichlorethene	mg/kg	390 {N}	5,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trimethylbenzene 2-Butanone	mg/kg mg/kg	4,700 {N}	61,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	mg/kg	12 {C}	52 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide	mg/kg	780 (N)	10,000 {N}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Chlorobenzene	mg/kg	160 {N}	2,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	630 {N}	8,200 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	mg/kg	1.6 {C}	7.2 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics																				
bis(2-Ethylhexyl)phthalate	mg/kg	46 {C}	200 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
See footnotes on last page.																				

									THOM THIVOI OIII	t, rtadiora / timy	7 1111111111111111111111111111111111111	ant, Nauloiu, Vii	giilia							
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB21B	NBGSB21C	NBGSB21D	NBGSB22A	NBGSB22B	NBGSB22C	NBGSB22D	NBGSB23A	NBGSB23B	NBGSB23C	NBGSB23D	NBGSB24A	NBGSB24B	NBGSB24C	NBGSB24D	NBGSB25A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5	1 - 3	3 - 5	5 - 7	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04	07/20/04
Inorganics																				
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	15,500	16,400	36,900	12,700	13,700	33,400	54,900	17,300	26,400	21,000	18,000	13,000	13,500	13,200	16,000	17,100
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.390 J	0.880 J	0.960 J	25.5 B	0.370 J	0.710 J	0.680 L	0.860 B	0.530 J	0.510 J	0.330 J	0.750 B	0.530 J	<0.280	0.410 J	2.60 B
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	6.50	4.90	13.3	36.6 J	4.10	10.2	10.1	6.30	7.80	7.30	4.50	5.60	7.20	3.90	3.60	6.50
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	46.5	41.6	25.9	618	25.9	23.8	24.1	36.6	21.1	16.2	14.6	97.1	48.1	52.4	27.3	202
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.470	0.260	0.590	0.470	0.290	0.580	1.20	0.360	0.370	0.300	0.250	0.470	0.540	0.630	0.290	0.530
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.270 J	0.370 J	0.580 J	10.6	0.190 J	<0.0290	<0.0390	<0.0300	<0.0310	<0.0310	<0.0320	0.280 J	<0.0320	<0.0300	<0.0300	1.40
Calcium	mg/kg				774	766	347	15,000	820	996	76.1 B	1,930	440	122	27.1 B	9,580	777	608	414	37,700
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	32.9	352	53.1	9,690	23.0	53.6	41.3	50.8	54.3	31.8	26.9	174	26.0	16.1	18.0	494
Cobalt	mg/kg			72.3	4.50	4.60	3.50	85.2	4.10	3.30	6.50	3.90	3.70	3.30	2.80	6.80	5.90	10.6	3.30	9.70
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	9.10	16.1	17.6	567	4.00	16.2	30.0	10.8	10.6	8.50	6.70	37.9	8.50	5.10	5.80	95.4
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	19,700	17,700	46,400	40,400	16,700	38,500	45,400	20,400	27,400	25,700	16,900	13,700	23,400	12,500	15,100	19,900
Lead	mg/kg	400	750	26.8	30.4	4,090	24.7	111,000	27.6	143 J	34.9 J	348 J	147 J	50.1 J	10.0 J	1,710 J	27.4 J	23.2 J	10.0 J	5,610 J
Magnesium	mg/kg				547 J	878 J	864 J	8,340 J	575 J	1,100	1,120	1,330	683	372	296	4,850	526	688	646	19,700
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	621	47.7	62.1	435	182	63.4	74.6	110	39.2	63.7	36.2	407	471	501	110	290
Mercury	mg/kg	2.35	30.66	0.13	0.0290 J	0.0400	0.250	0.0310 J	0.0390	0.200 J	0.100 J	0.0350 J	0.0890 J	0.0410 J	0.0400 J	0.0360 J	0.0380 J	0.0580 J	0.0310 J	0.0400 J
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	7.90	5.50	13.9	21.0	4.20	12.7	23.2	7.50	9.70	8.00	6.70	8.10	7.70	6.60	6.10	13.8
Potassium	mg/kg				405	608	939	1,190	514	1,080	1,080	691	864	580	369	604	444	507	649	1,430
Selenium	mg/kg	39.1 {N}	511 {N}		0.720 J	0.560 J	1.40 J	<0.570	0.680 J	<0.530	<0.710	<0.540	0.680 J	0.650 J	<0.580	<0.530	<0.590	<0.540	<0.560	<0.530
Silver	mg/kg	39.1 {N}	511 {N}		<0.110	<0.110	0.130 B	0.990	<0.120	<0.110	<0.140	<0.110	<0.120	<0.110	<0.120	<0.540	<0.120	<0.110	<0.110	<0.110
Sodium	mg/kg				77.0 B	<141	84.7 B	2,020 B	73.7 B	52.1 B	60.4 B	104 B	65.5 B	41.3 B	56.8 B	137 B	74.5 B	52.9 B	47.3 B	404 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.330	0.460 J	<0.400	<17.2	<0.360	1.20 B	0.710 B	<0.330	<0.350	<0.340	<0.350	<0.320	<0.360	<0.330	<0.340	<0.330
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	38.6	37.5	86.5	40.5 J	35.3	76.8	84.9	42.9	56.1	48.2	34.0	29.2	42.3	28.1	32.8	35.4
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	29.6	647	23.1	15,800	14.2	45.5	31.0	159	31.1	23.0	8.90	875	34.8	20.1	11.1	4,040
Inorganics-TCLP																				
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	μg/L	100,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium Chromium	μg/L	1,000* 5.000*			NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA
	μg/L	- /			NA NA	NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA
Lead Selenium	μg/L ua/L	5,000* 1.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	F J	5.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Miscellaneous	μg/L	3,000			INA	IVA	INA	IVA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	IVA	INA
	0/				0.1	0.4	76	0.2	0.5	0.4	70	0.6	0.4	0.4	0.4	00	0.4	0E	07	01
Percent Solids	%				81	84	76	83	85 NA	81	72	86	84	84	84	88	84	85 NA	87	91
Prince Carbon	pH Units				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-11 through 3-12.NBG Tables-reformatted

										, ,	Ammunition Pla	. , ,	3		
Sample Name: Sample Depth (ft):		Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide Background	NBGSB25B 1 - 3	NBGSB25C 3 - 5	NBGSB25D 5 - 7	NBGSB26A 0 - 0.5	NBGSB27A 0 - 0.5	NBGSB28A 0 - 0.5	NBGSB29A 0 - 0.5	NBGSB30A 0 - 0.5	NBGSB31A 0 - 0.5	NBGSB32A 0 - 0.5	NBGSB33A 0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/20/04	07/20/04	07/20/04	07/20/04	07/22/04	07/21/04	07/20/04	07/21/04	07/22/04	07/19/04	07/21/04
Dioxin/Furan															
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PeCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PeCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives															
None Detected		-			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides															
2,4,5-T	mg/kg	78 (N)	1,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DB	mg/kg	63 {N}	820 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dalapon	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dicamba	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MCPP	mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides															
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs			•	•			•				•	•	•		•
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	0 0										Į.	Į.			Į.
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		< 0.037	<0.040	<0.040	< 0.039	< 0.043	< 0.042	<0.040	<0.041	<0.044	< 0.042	< 0.039
Volatile Organics		0110 (0)	(0)											***	
1,1-Dichlorethene	mg/kg	390 {N}	5,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	mg/kg		5,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	mg/kg	7,000 {N}	92,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		12 {C}	52 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone Benzene	ma/ka		0- 101		1 1/ 1		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	mg/kg mg/kg				NΔ	NΔ			11/	14/7	14/7		14/7		NA NA
Benzene Carbon Disulfide	mg/kg	780 {N}	10,000 {N}		NA NA	NA NA			NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	
Benzene Carbon Disulfide Chlorobenzene	mg/kg mg/kg	780 {N} 160 {N}	10,000 {N} 2,000 {N}		NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Benzene Carbon Disulfide Chlorobenzene d-Limonene	mg/kg mg/kg mg/kg	780 {N} 160 {N}	10,000 {N} 2,000 {N}		NA NA	NA NA	NA NA	NA NA	NA						
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride	mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C}	10,000 {N} 2,000 {N} 380 {C}		NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA						
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C}	10,000 {N} 2,000 {N} 380 {C}		NA NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA						
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C} 630 {N}	10,000 {N} 2,000 {N} 380 {C} 8,200 {N}		NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene Toluene Trichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C}	10,000 {N} 2,000 {N} 380 {C}		NA NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA						
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene Toluene Trichloroethene Semivolatile Organics	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C} 630 {N} 1.6 {C}	10,000 {N} 2,000 {N} 380 {C} 8,200 {N} 7.2 {C}		NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene Toluene Trichloroethene Semivolatile Organics bis(2-Ethylhexyl)phthalate	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C} 630 {N} 1.6 {C}	10,000 {N} 2,000 {N} 		NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA						
Benzene Carbon Disulfide Chlorobenzene d-Limonene Methylene Chloride tert-Butylbenzene Toluene Trichloroethene Semivolatile Organics	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	780 {N} 160 {N} 85 {C} 630 {N} 1.6 {C}	10,000 {N} 2,000 {N} 380 {C} 8,200 {N} 7.2 {C}		NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-11 through 3-12.NBG Tables-reformatted

									New River Offic	, Radiold Allily	Ammunition	ant, Radford, Vi	giilla		
Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSB25B	NBGSB25C	NBGSB25D	NBGSB26A	NBGSB27A	NBGSB28A	NBGSB29A	NBGSB30A	NBGSB31A	NBGSB32A	NBGSB33A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	1 - 3	3 - 5	5 - 7	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/20/04	07/20/04	07/20/04	07/20/04	07/22/04	07/21/04	07/20/04	07/21/04	07/22/04	07/19/04	07/21/04
Inorganics															
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	11,500	11,600	20,300	14,500	10,500	17,700	15,000	26,600	16,500	22,800	17,500
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.280	0.420 J	0.430 J	0.790 B	<0.360 L	0.830 B	0.370 B	0.650 B	0.410 B	0.680 B	0.390 B
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	4.30	12.7	6.10	5.20	4.00	4.30	2.40 B	11.0	5.90	8.90	8.10
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	73.8	27.4	26.0	52.9	52.8 K	126	158	35.1	40.6	47.0	34.1
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.510	0.400	0.390	0.530	0.470	0.570	0.740	0.710	0.390	0.680	0.450
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.860	0.440 J	0.260 J	0.240 J	0.0860 J	0.520 J	0.420 J	0.190 J	0.240 J	0.290 J	0.150 J
Calcium	mg/kg				4,170	941	1,010	978	1,450	81,900	129,000	1,370	22,500	2,640	2,790
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	14.9	29.6	24.0	24.8	21.7	25.8	26.4	36.8	23.6	39.9	28.0
Cobalt	mg/kg			72.3	13.4	4.00	2.80	5.20	7.50	6.70	8.30	5.10	3.20	6.80	4.00
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	313	8.60	12.0	10.2	8.90	26.9	39.7	16.9	11.0	22.8	11.3
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	38,600	42,300	23,400	17,900 J	11,700 J	16,800 J	16,100 J	34,300 J	19,100 J	31,400 J	23,200 J
Lead	mg/kg	400	750	26.8	63.5	24.1	11.1	80.1	110	124	79.5	51.0	53.9	159	20.8
Magnesium	mg/kg				2,800 J	658 J	779 J	908	983 K	39,900	58,500	1,220	11,800	1,840	2,150
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	675	221	63.9	409	252 K	221	204	116	122	211	137
Mercury	mg/kg	2.35	30.66	0.13	0.0210 J	0.0600	0.0780	0.0310 J	0.0480	0.0410	0.0450	0.0700	0.0610	0.0970	0.0490
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	7.30	4.80	8.70	8.20	7.20	13.1	15.4	13.8	7.80	14.8	8.90
Potassium	mg/kg				701	469	793	458	509 K	2,210	3,680	732	856	764	1,010
Selenium	mg/kg	39.1 {N}	511 {N}		1.40 J	1.50 J	<0.570	<0.620	<0.710	<0.630	<0.560	0.940 J	<0.600	<0.660	0.580 J
Silver	mg/kg	39.1 {N}	511 {N}		<0.110	<0.110	<0.120	<0.130	<0.140	<0.130	<0.110	<0.120	<0.120	<0.130	<0.120
Sodium	mg/kg				142 B	69.7 B	77.4 B	69.3 B	79.9 B	187 B	210 B	65.0 B	126 B	99.0 B	59.4 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.330	<0.330	<0.350	<0.380	<0.430	<0.390	<0.340	< 0.370	<0.370	<0.400	<0.350
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	23.9	62.1	46.3	37.6	23.8	35.7	35.5	66.2	40.4	59.1	46.3
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	650	20.7	17.8	95.4	99.5	199	158	34.8	143	204	38.3
Inorganics-TCLP															
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	μg/L	100,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous															
Percent Solids	%				89	84	83	85	77	80	84	81	77	80	87
pH	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Risk Based Concentration.

{C} {N} Carcinogen.
Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

Constituent concentration quanitified as estimated.

Estimated concentration bias high.
Estimated concentration bias low.

Constituent concentration rejected.

Not Analyzed.

ND Not Detected (no detection limit given).

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial). 16 Inorganics constituent concentration exceeds Background Point Estimate.

5,000* TCLP Standards

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Page 12 of 12 G:\Pricts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-11 through 3-12.NBG Tables-reformatted

Table 3-12Historical Sediment Sampling Results, Northern Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name: Sample Depth (ft):		Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide Background	NBGSD01 0 - 0.5	NBGSD02 0 - 0.5	NBGSD03 0 - 0.5	NBGSD04 0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/18/02	07/14/04	07/16/04	07/16/04
Dioxin/Furan								
1,2,3,4,6,7,8-HpCDD	mg/kg				0.00004075	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				0.00000464	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				0.00000041	NA	NA	NA
1,2,3,4,7,8-HxCDD	mg/kg				0.0000053	NA	NA	NA
1,2,3,4,7,8-HxCDF	mg/kg				0.00000071	NA	NA	NA
1,2,3,6,7,8-HxCDD	mg/kg				0.00000141	NA	NA	NA
1,2,3,6,7,8-HxCDF	mg/kg				0.00000162 J	NA	NA	NA
1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF	mg/kg	0.0001 {C}	0.00046 {C}		0.00000136 0.00000021	NA NA	NA NA	NA NA
2,3,4,6,7,8-HxCDF	mg/kg mg/kg				0.00000021	NA NA	NA NA	NA NA
2,3,4,7,8-PeCDF	mg/kg				0.00000029	NA NA	NA NA	NA NA
2,3,7,8-TCDD	mg/kg	0.0000043 {C}	0.000019 (C)		0.00000024 0.00000047 J	NA NA	NA NA	NA
2,3,7,8-TCDF	mg/kg				0.00000038	NA NA	NA	NA
OCDD	mg/kg				0.002629 J	NA	NA	NA
OCDF	mg/kg				0.0000342 J	NA	NA	NA
Total HpCDDs	mg/kg				0.00008126	NA	NA	NA
Total HpCDFs	mg/kg				0.00002337	NA	NA	NA
Total HxCDDs	mg/kg		-		0.00000802	NA	NA	NA
Total HxCDFs	mg/kg		-		0.00000747	NA	NA	NA
Total PeCDFs	mg/kg				0.00000336	NA	NA	NA
Total TCDDs	mg/kg				0.00000114	NA	NA	NA
Total TCDFs	mg/kg				0.00000151	NA	NA	NA
Explosives								
None Detected						NA	NA	NA
Herbicides								
None Detected						NA	NA	NA
Organochlorine Pesticides								
4,4'-DDD	mg/kg	2.7 (C)	12 {C}		0.00244	NA	NA	NA
4,4'-DDE	mg/kg	1.9 (C)	8.4 {C}		0.00085 B	NA	NA	NA
4,4'-DDT	mg/kg	1.9 (C)	8.4 {C}		0.00421	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		0.00185	NA	NA	NA
Endosulfan II	mg/kg				0.00176	NA	NA	NA
PAHs								
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.0086 B	NA	NA	NA
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		0.052	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		0.029	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C} 0.022 {C}	3.9 (C)		0.19	NA NA	NA NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg		0.39 {C}		0.21 0.31	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg mg/kg	0.22 {C}	3.9 {C}		0.18	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		0.18	NA NA	NA NA	NA NA
Chrysene	mg/kg	2.2 (C)	390 (C)		0.16	NA NA	NA NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 (C)		0.036	NA NA	NA NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		0.33	NA NA	NA NA	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N)		0.01	NA NA	NA NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		0.18	NA NA	NA NA	NA
Naphthalene	mg/kg	160 (N)	2,000 {N}		0.0053 B	NA NA	NA NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		0.15	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		0.25	NA	NA	NA
PCBs					-	•	•	
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		0.14	0.068	< 0.039	0.15
Volatile Organics			. ,					
None Detected						NA	NA	NA
Semivolatile Organics								
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		0.040 J	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		0.018 J	NA NA	NA NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.22	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.28	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.37	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				0.16 J	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 {C}		0.13 J	NA	NA	NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.18 B	NA	NA	NA
Carbazole	mg/kg	32 {C}	140 (C)		0.022 J	NA	NA	NA
Chrysene	mg/kg	22 (C)	390 (C)		0.23	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		0.37	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		0.17 J	NA	NA	NA
	/1	000 (N)	0.400 (N)		0.40 1	NIA	NIA	NA
Phenanthrene Pyrene	mg/kg mg/kg	230 {N} 230 {N}	3,100 {N} 3,100 {N}		0.12 J 0.34	NA NA	NA NA	NA

See foot notes on last page.

Table 3-12Historical Sediment Sampling Results, Northern Burning Ground
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:		Adjusted	Adjusted	Facility-Wide	NBGSD01	NBGSD02	NBGSD03	NBGSD04
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/18/02	07/14/04	07/16/04	07/16/04
Inorganics								
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	17,900	21,400	19,500	13,200
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.360 B	0.380 B	1.60 B	2.10 B
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	5.56 J	8.90	6.80	5.10
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	55.4	44.2	123	142
Beryllium	mg/kg	15.6 (N)	204.4 {N}	1.02 {N}	0.500 B	0.670 J	0.640 J	0.480 J
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	0.270	0.0830 J	1.70	1.10
Calcium	mg/kg				3,300 J	2,680	35,700	12,200
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	41.1 J	38.3	397	151
Cobalt	mg/kg			72.3	5.60 J	6.20	8.90	7.50
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	22.1 L	20.5	41.5	46.7
Iron	mg/kg	5,500 {N}	72,000 {N}	50,962 {N}	22,600 J	31,700	24,800	14,500
Lead	mg/kg	400	750	26.8	159	146	3,500	2,200
Magnesium	mg/kg				2,570 J	1,820	19,000	7,930
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	204 J	215	334	319
Mercury	mg/kg	2.35	30.66	0.13	0.0700 J	0.100	0.0480	0.0510
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	10.3	14.3	13.1	10.0
Potassium	mg/kg				999	655	1,530	899
Selenium	mg/kg	39.1 {N}	511 {N}		<1.21 L	0.840 J	< 0.550	<0.520
Sodium	mg/kg				15.0 B	79.9 B	<560	345 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.180 J	< 0.360	< 0.340	< 0.320
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	40.6 J	55.8	46.3	29.0
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	473 J	208	4,220	2,630
Miscellaneous								
Percent Solids	%				NA	81	87	82

RBC Risk Based Concentration.

(C) Carcinogen.

{N} Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

J Constituent concentration quantified as estimated.

K Estimated concentration bias high.

L Estimated concentration bias low.

NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Table 3-13 Historical Soil Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								New River	Unit, Radfoi	rd Army Amm	iunition Plant	, Radford, Vii	rginia									
Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-07	SS-08	SS-08a	TR-02A	TR-02C	RYSB1A	RYSB1B	RYSB1C	RYSB2A	RYSB2B	RYSB3A	RYSB3B	RYSB4A	RYSB4B	RYSB5A	RYSB5B	RYSB6A	RYSB6B
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0.25 - 0.5	0 - 0.16	0 - 0.16	0 - 2	4 - 8	19 - 23	0 - 2	4 - 6	1 - 3	3 - 4.2	0 - 4	4 - 6	0 - 4	4 - 6	0 - 4	4 - 6
Date Collected:	Units	(Residential)	(Industrial)	Point	06/04/97	06/04/97	03/30/98	04/02/98	04/02/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98
Explosives																						
2,4-Dinitrotoluene	mg/kg	16 (N)	200 (N)		NA	NA	NA	NA	NA	< 0.3	<0.3	<0.3	<0.3	<0.2	<0.2	<0.2	<0.3	<0.3	<0.2	<0.3	< 0.3	< 0.3
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 {N}		ND	0.32 C	NA	NA	NA	< 0.3	<0.3	<0.3	<0.3	<0.2	<0.2	<0.2	<0.3	<0.3	<0.2	<0.3	< 0.3	<0.3
4-Amino-2,6-Dinitrotoluene	mg/kg				NA	NA	NA	NA	NA	<0.3	<0.3	<0.3	<0.3	<0.2	<0.2	<0.2	<0.3	<0.3	<0.2	<0.3	<0.3	<0.3
Herbicides																						
None Detected					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides																						
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		ND	R	0.01 I	0.04	ND	NA												
Alpha-BHC	mg/kg	0.1 {C}	0.45 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-Chlordane	mg/kg				ND	0.03 J	0.02 l	ND	R	NA												
Beta-BHC	mg/kg	0.36 {C}	1.6 (C)		NA	NA	NA	NA	NA 2.27	NA												
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		ND	R	R	ND	0.27	NA												
Endrin Aldehyde	mg/kg				ND	0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs		04 (N)	440 (N)			L	l NIA	l NIA		NI A	NIA	NIA	N.1.0	NIA.	NIA I	N10						
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Acenaphthylone	mg/kg	470 (N)	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthylene	mg/kg mg/kg	230 {N} 2,300 {N}	3,100 {N} 31,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene Benzo(a)anthracene	mg/kg	2,300 (N) 0.22 (C)	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg	0.22 (C) 0.022 (C)	0.39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.022 (C)	3.9 (C)		NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
Benzo(g,h,i)perylene	mg/kg				NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 (C)	39 (C)		NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 (C)	390 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg	160 (N)	2,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs											1			1								
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		ND	1.7	1.0	ND	ND	NA												
Volatile Organics																						
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-Octanone	mg/kg	7 000 (NI)			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA									
Acetone Ethanol	mg/kg mg/kg	7,000 {N}	92,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		0.00070 B	0.0030 B	3.0 B	ND ND	ND ND	NA NA												
Semivolatile Organics	mg/kg	00 (0)	000 (0)		0.00070 B	0.0000 В	0.0 B	NB	ND	1471	1471	1471	147.	1471	14/1	14/ (14/ (14/ (147 (1471	1471	1471
2.4-Dinitrotoluene	ma/ka	16 {N}	200 (N)		ND	0.40.1	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NA						
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		ND	0.40 J	NA	NA	NA NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Acenaphthene	mg/kg	470 (N)	6,100 (N)		NA NA	NA	NA	NA	NA NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Acenaphthylene	mg/kg	230 {N}	3,100 (N)		NA NA	NA	ND	0.070 J	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	ND	0.10 J	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		ND	0.080 J	ND	0.40 J	ND	< 0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		ND	0.080 J	ND	0.40 J	ND	< 0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		ND	0.080 J	ND	1.0	ND	< 0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		ND	0.090 J	ND	0.56	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Benzoic Acid	mg/kg	31,000 {N}	410,000 {N}		NA 1.0	NA 0.40 I	NA	NA 0.44 l	NA	<1.8	<2.3	<2.3	<2.1	<2.3	<2.1	<2.0	<2.6	<2.3	<2.2	<2.0	<2.2	<2.3
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		1.8	0.10 J	ND	0.11 J	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Carbazole	mg/kg	32 {C}	140 (C)		NA ND	NA 0.000 I	ND	0.10 J	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Chrysene Dibonzo(a b)anthracono	mg/kg	22 (C)	390 (C)		ND NA	0.090 J	ND	0.66	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Dibenzo(a,h)anthracene Dibenzofuran	mg/kg mg/kg	0.022 {C} 7.8 {N}	0.39 {C} 100 {N}		NA NA	NA NA	ND NA	0.050 J NA	ND NA	<0.35 <0.35	<0.46 <0.46	<0.46 <0.46	<0.42 <0.42	<0.46 <0.46	<0.41 <0.41	<0.41 <0.41	<0.52 <0.52	<0.46 <0.46	<0.43 <0.43	<0.41 <0.41	<0.43 <0.43	<0.46 <0.46
Diethylphthalate	mg/kg	6,300 (N)	82,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	0.32 J	<0.43	<0.41	<0.43	1.1
Di-n-Butylphthalate	mg/kg	780 {N}	10,000 {N}		ND	1.1	NA NA	NA NA	NA NA	<0.35	<0.46	<0.46	0.11 B	<0.46	0.060 B	<0.41	<0.52	<0.46	<0.43	<0.41	0.060 B	<0.46
Fluoranthene	mg/kg	310 {N}	4,100 {N}		ND	0.30 J	ND	0.39	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Fluorene	mg/kg	310 (N)	4,100 (N)		NA NA	NA	NA NA	NA	NA NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 (C)	3.9 {C}		NA NA	NA	ND	0.11 J	ND	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA	NA	NA	NA	NA	<0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Pentachlorophenol	mg/kg	5.3 {C}	24 {C}		NA	NA	ND	0.11 J	830 C	<1.8	<2.3	<2.3	<2.1	<2.3	<2.1	<2.0	<2.6	<2.3	<2.2	<2.0	<2.2	<2.3
Phenanthrene	mg/kg	230 {N}	3,100 (N)		ND	0.10 J	ND	0.060 J	ND	< 0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
Pyrene	mg/kg	230 {N}	3,100 {N}		ND	0.10 J	ND	0.86	ND	< 0.35	<0.46	<0.46	<0.42	<0.46	<0.41	<0.41	<0.52	<0.46	<0.43	<0.41	<0.43	<0.46
See foot notes on last page																_	_		-	_		

See foot notes on last page

Historical Soil Sampling Results, Rail Yard
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:		Adjusted	Adjusted	Facility-Wide	SS-07	SS-08	SS-08a	TR-02A	TR-02C	RYSB1A	RYSB1B	RYSB1C	RYSB2A	RYSB2B	RYSB3A	RYSB3B	RYSB4A	RYSB4B	RYSB5A	RYSB5B	RYSB6A	RYSB6B
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0.25 - 0.5	0 - 0.16	0 - 0.16	0-2	4 - 8	19 - 23	0-2	4-6	1 - 3	3 - 4.2	0 - 4	4 - 6	0 - 4	4 - 6	0 - 4	4 - 6
Date Collected:	Units	(Residential)	(Industrial)	Point	06/04/97	06/04/97	03/30/98	04/02/98	04/02/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98	08/03/98
Inorganics		(,	(arrange arrang				00,00,00						0.000.00									
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	338	18,100	24,800	NA	NA	817	12,400	10,400	5,630	12,700	7,470	11,100	17,500	23,300	14,200	10,200	12,100	15,400
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA	NA	NA	NA	NA	<0.510	<0.700	< 0.690	< 0.610	< 0.690	< 0.600	< 0.590	<0.780	< 0.670	< 0.630	<0.620	< 0.630	<0.680
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	1.80	20.8	8.90	NA	NA	1.60 K	4.90 K	4.50 K	2.90 K	4.90 K	2.10 K	3.90 K	5.60 K	4.90 K	7.00 K	4.30 K	7.80 K	5.40 K
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	1,770 J	147	53.7	NA	NA	94.1 K	27.5 K	38.6 K	22.7 K	17.6 K	15.4 K	17.4 K	20.8 K	41.1 K	22.4 K	19.9 K	29.9 K	24.8 K
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	ND	1.30	1.40	NA	NA	<0.100	0.250 J	4.30	0.210 J	0.520 J	0.130 J	0.500 J	0.230 J	0.550 J	0.660	0.980	1.50	0.840
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	ND	1.80	0.800	NA	NA	0.130 J	<0.140	<0.140	<0.120	<0.140	<0.120	<0.120	<0.160	<0.130	<0.130	<0.120	< 0.130	<0.140
Calcium	mg/kg				196,000	28,500	4,720	NA	NA	177,000	5,130	1,850	1,390	152 J	761	8,340	1,660	2,650	1,670	2,540	4,950	1,520
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	ND	39.8	41.1	NA	NA	3.10	20.0	21.3	7.00	46.3	9.90	19.4	21.8	20.3	21.4	11.2	19.8	26.9
Cobalt	mg/kg			72.3	ND	25.8	32.1	NA	NA	1.30 K	9.80 K	5.80 K	17.1 K	2.10 K	4.90 K	7.40 K	74.9 K	74.5 K	8.40 K	39.1 K	22.7 K	11.5 K
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	ND	60.2	31.0	NA	NA	2.30 B	4.70 B	15.1 K	3.20 B	9.10 B	4.80 B	14.8 K	8.50 B	14.0 K	11.7 K	9.00 B	12.8 K	8.80 B
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	2,780	39,600	48,400	NA	NA	2,600	24,700	20,200	7,120	31,900	11,200	21,800	27,700	23,600	31,200	14,800 L	27,200	30,300
Lead	mg/kg	400	750	26.8	1.80	149	52.6	NA	NA	9.70 L	15.4 L	25.4 L	25.2 L	18.0 L	7.20 L	15.9 L	33.7 L	42.1 L	25.2 L	49.2	25.3 L	22.2 L
Magnesium	mg/kg				104,000	15,200	2,710	NA	NA	90,700	2,710	994	660	190 J	266 J	4,620	606 J	1,700	1,030	1,520	3,140	680
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	94.0	203	233	NA	NA	105 K	151 K	235 K	202 K	70.9 K	36.6 K	154 K	301 K	342 K	108 K	405 K	213 K	133 K
Mercury	mg/kg	2.35	30.66	0.13	NA	NA	0.200	NA	NA	<0.110	0.460	<0.140	0.140	0.150	<0.130	<0.120	<0.140	0.150	<0.120	0.140	<0.130	<0.130
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	ND	17.5	21.1	NA	NA	2.90 K	2.50 K	8.90 K	1.60 K	3.30 K	2.80 K	10.5 K	7.90 K	25.5 K	8.00 K	7.20 K	10.8 K	4.70 K
Potassium	mg/kg				ND	1,110	985	NA	NA	448 K	382 K	367 K	162 K	249 K	412 K	504 K	501 K	702 K	437 K	329 K	747 K	750 K
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	NA	NA	1.00 K	<0.700	< 0.690	<0.610	<0.690	<0.600	<0.590	<0.780	<0.670	<0.630	<0.620	< 0.630	<0.680
Sodium	mg/kg				NA	NA	NA	NA	NA	331 B	41.4 B	40.4 B	43.0 B	30.0 B	33.1 B	46.7 B	41.6 B	46.2 B	59.1 B	82.3 B	52.8 B	70.3 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	ND	0.400	0.400	NA	NA	<0.210 L	<0.280 L	0.440 B	<0.240 L	<0.280 L	<0.240 L	<0.240 L	<0.310 L	0.700 B	0.420 B	0.860 B	<0.250 L	<0.270 L
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	31.8	75.9	91.5	NA	NA	5.00 K	44.0 K	49.1 K	23.7 K	72.4 K	19.7 K	38.7 K	60.4 K	42.6 K	57.1 K	36.3 K	48.4 K	55.9 K
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	12.5	752	159	NA	NA	12.5	8.20	9.60	7.40	13.3	6.10	30.5	10.3	23.7	33.3	14.4	15.3	8.00
Miscellaneous																						
рН	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

Table 3-13 Historical Soil Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

							New R	iver Unit, Radf	ord Army Amn	nunition Plant	t, Radford, Virg	ginia								
Sample Name:		Adjusted	Adjusted	Facility-Wide	RYSB7A	RYSB7B	RYSB08A	RYSB08B	RYSB09A	RYSB09B	RYSB09C	RYSS01	RYSS02	RYSS03	RYSS04	RYSS05	RYSS06	RYSS07	RYSS08	RYSS09
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 4	4 - 6	0 - 0.5	4 - 6	0 - 0.5	4 - 6	8 - 10	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/03/98	08/03/98	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02
Explosives							•	•	•		•		•		•			•	•	
2.4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		<0.3 [<0.3]	< 0.3	<0.2	<0.2	NA	NA	NA	<0.2	NA	0.06 J	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 {N}		<0.3 [<0.3]	< 0.3	<0.2	<0.2	NA	NA	NA	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
4-Amino-2,6-Dinitrotoluene	mg/kg		`		<0.3 [<0.3]	<0.3	<0.2	0.04 J	NA	NA	NA	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Herbicides		•					•	•	•		•		•		•			•	•	
None Detected					NA	NA		NA		NA	NA	NA	NA	NA	NA		NA	NA	NA	
Organochlorine Pesticides			I.	<u> </u>						L		· ·		ı.			· ·		•	
4,4'-DDE	mg/kg	1.9 (C)	8.4 {C}		NA	NA	<0.00882	NA	< 0.0079	NA	NA	NA	NA	NA	NA	<0.00083	NA	NA	NA	<0.00083
Alpha-BHC	mg/kg	0.1 {C}	0.45 {C}		NA	NA	<0.00882	NA	< 0.0079	NA	NA	NA	NA	NA	NA	0.0006 J	NA	NA	NA	0.00052 J
Alpha-Chlordane	mg/kg				NA	NA	<0.00882	NA	< 0.0079	NA	NA	NA	NA	NA	NA	<0.00083	NA	NA	NA	<0.00083
Beta-BHC	mg/kg	0.36 {C}	1.6 (C)		NA	NA	<0.00882	NA	<0.0079	NA	NA	NA	NA	NA	NA	0.00017 J	NA	NA	NA	<0.00083
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA	NA	<0.00882	NA	<0.0079	NA	NA	NA	NA	NA	NA	<0.00083	NA	NA	NA	<0.00083
Endrin Aldehyde	mg/kg				NA	NA	<0.00882	NA	<0.0079	NA	NA	NA	NA	NA	NA	<0.00083	NA	NA	NA	<0.00083
PAHs																				
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	<0.0022	0.0013 B	NA	NA	NA	<0.0021	NA	NA	<0.0023	0.0047	<0.0022	0.001 J	0.00088 J	<0.0021
Acenaphthene	mg/kg	470 {N}	6,100 {N}		NA	NA	<0.0022	<0.0027	NA	NA	NA	<0.0021	NA	NA	<0.0023	<0.0021	<0.0022	0.0065	<0.002	<0.0021
Acenaphthylene	mg/kg	230 {N}	3,100 {N}		NA	NA	<0.0022	<0.0027	NA	NA	NA	<0.0021	NA	NA	<0.0023	0.003	<0.0022	<0.0022	<0.002	<0.0021
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA	<0.0022	<0.0027	NA	NA	NA	0.002 J	NA	NA	<0.0023	0.0051	0.0015 J	0.0094	<0.002	<0.0021
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA	0.0017 J	<0.0027	NA	NA	NA	0.008	NA	NA	0.0013 J	0.019	0.0078	0.027	0.0011 J	0.0012 J
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA NA	0.0016 J	<0.0027	NA NA	NA	NA NA	0.0074	NA NA	NA NA	0.0012 J	0.027	0.0059	0.019	0.0013 J	0.0011 J
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	0.0068	<0.0027	NA NA	NA NA	NA NA	0.029	NA NA	NA NA	0.002 J	0.07	0.022	0.03	0.003	0.003
Benzo(g,h,i)perylene	mg/kg				NA NA	NA NA	0.0016 J	<0.0027	NA NA	NA NA	NA NA	0.0065 J	NA NA	NA NA	0.0017 J	0.037	0.0073	0.017	0.0016 J	0.0017 J
Benzo(k)fluoranthene Chrysene	mg/kg	2.2 {C} 22 {C}	39 (C) 390 (C)		NA NA	NA NA	0.0023 0.0042	<0.0027 <0.0027	NA NA	NA NA	NA NA	0.0093	NA NA	NA NA	<0.0023 0.0013 J	0.02 0.037	0.0062 0.018	0.0088 0.022	0.00084 J 0.0021	0.00083 J 0.0021
Dibenzo(a,h)anthracene	mg/kg mg/kg	0.022 {C}	0.39 (C)		NA NA	NA NA	<0.0042	<0.0027	NA NA	NA NA	NA NA	0.02 0.0021 J	NA NA	NA NA	<0.00133	0.037	0.016 J	0.022	<0.0021	<0.0021
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	0.0069	<0.0027	NA NA	NA NA	NA NA	0.00213	NA NA	NA NA	0.0028	0.011	0.00103	0.0043	0.002	0.0021
Fluorene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	<0.0022	<0.0027	NA NA	NA	NA NA	<0.0021	NA	NA NA	<0.0023	<0.007	<0.0022	0.0067	<0.002	<0.0021
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	0.0017 J	<0.0027	NA	NA NA	NA NA	0.0076 J	NA NA	NA NA	0.0016 J	0.04	0.0086	0.018	0.0016 J	0.0014 J
Naphthalene	mg/kg	160 (N)	2,000 {N}		NA NA	NA	0.00097 B	0.0014 B	NA NA	NA NA	NA NA	0.0016 B	NA	NA	<0.0023	0.0041 B	<0.0022	0.0014 B	0.0012 B	<0.0021
Phenanthrene	mg/kg	230 (N)	3,100 (N)		NA	NA	0.0016 J	<0.0027	NA	NA	NA	0.0089	NA	NA	0.0013 J	0.012	0.012	0.057	0.0013 J	0.002 J
Pyrene	mg/kg	230 (N)	3,100 (N)		NA	NA	0.0063	<0.0027	NA	NA	NA	0.028	NA	NA	0.0017 J	0.026	0.028	0.043	0.0022	0.0027
PCBs	0 0	,	, ,				l.	1	l .	I.	l	I.	·	1	ı	l.	I.	l .	1	I.
Aroclor-1254	mg/kg	0.16 (C)	1.4 (C)		NA	NA	< 0.040	< 0.050	< 0.030	< 0.040	< 0.040	< 0.040	< 0.030	0.37	< 0.040	0.020 J	< 0.040	1.2	< 0.030	< 0.040
Volatile Organics				<u> </u>						L		· ·					· ·			
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		NA	NA	<0.0066	<0.0086	< 0.0059	<0.0068	< 0.0067	< 0.0061	NA	NA	< 0.0067	< 0.0056	0.016 K	< 0.0059	< 0.0054	< 0.0056
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.014 J	NA	0.15 J	0.0090 J	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	<0.0066	<0.0086	< 0.0059	<0.0068	< 0.0067	<0.0061	NA	NA	0.060 J	<0.0056 L	0.31 J	<0.0059 L	0.045 B	<0.0056 L
Ethanol	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.018 J	NA	0.087 J	NA	NA	NA
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	NA	<0.0066	<0.0086	< 0.0059	<0.0068	<0.0067	<0.0061	NA	NA	<0.0067	<0.0056	< 0.0063	<0.0059	0.00061 B	<0.0056
Semivolatile Organics				-																
2,4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		NA	NA	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	<0.22	<0.20	<0.21
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		<0.41 [<0.40]	< 0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	0.014 J	<0.22	0.012 J	<0.20	<0.21
Acenaphthene	mg/kg	470 (N)	6,100 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	0.12 J	<0.20	<0.21
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	<0.22	<0.20	<0.21
Anthracene	mg/kg	2,300 {N}	31,000 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	0.21 J	<0.20	<0.21
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	0.014 J	NA	NA	<0.23	0.024 J	<0.22	0.60	<0.20	<0.21
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA NA	<0.20	NA	NA	<0.23	0.032 J	<0.22	0.55	<0.20	<0.21
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		<0.41 [<0.40]	<0.43	<0.22	<0.26 <0.26	NA NA	NA NA	NA NA	0.039 J	NA NA	NA NA	<0.23	0.084 J	<0.22 <0.22	0.73	<0.20	<0.21
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		<0.41 [<0.40]	<0.43 <0.43	<0.22 <0.22	<0.26	NA NA	NA NA	NA NA	<0.20 0.013 J	NA NA	NA NA	<0.23 <0.23	<0.21 0.027 J	<0.22	0.35 0.23	<0.20 <0.20	<0.21 <0.21
Benzo(k)fluorantnene Benzoic Acid	mg/kg mg/kg	2.2 {C} 31,000 {N}	39 (C) 410,000 (N)		<0.41 [<0.40] <2.1 [<2.0]	<0.43	<0.22 0.15 B	<0.26	NA NA	NA NA	NA NA	<1.0	NA NA	NA NA	<0.23	<1.0	<0.22	<1.1	<0.20	<0.21
bis(2-Ethylhexyl)phthalate	mg/kg mg/kg	46 (C)	200 (C)		<2.1 [<2.0] <0.41 [<0.40]	<0.43	0.15 B 0.038 B	0.060 B	NA NA	NA NA	NA NA	0.20 B	NA NA	NA NA	<0.23	0.097 B	0.12 B	<0.22	<0.99	<0.21
Carbazole	mg/kg	32 (C)	140 {C}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA NA	NA NA	NA NA	<0.20 B	NA NA	NA NA	<0.23	<0.21	<0.22	0.12 J	<0.20	<0.21
Chrysene	mg/kg	22 (C)	390 (C)		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA NA	NA NA	NA NA	0.022 J	NA NA	NA NA	<0.23	0.048 J	<0.22	0.12.3	<0.20	<0.21
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 (C)		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA NA	NA NA	NA NA	<0.20	NA NA	NA NA	<0.23	<0.21	<0.22	0.083 J	<0.20	<0.21
Dibenzofuran	mg/kg	7.8 {N}	100 (N)		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA NA	NA NA	NA NA	<0.20	NA	NA NA	<0.23	<0.21	<0.22	0.045 J	<0.20	<0.21
Diethylphthalate	mg/kg	6,300 {N}	82,000 {N}		0.090 J [<0.40]	<0.43	<0.22	<0.26	NA NA	NA NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	<0.22	<0.20	<0.21
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		0.090 B [<0.40]	0.11 B	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	<0.22	<0.20	<0.21
Fluoranthene	mg/kg	310 {N}	4,100 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	0.042 J	NA	NA	<0.23	0.058 J	0.059 J	1.6	<0.20	<0.21
Fluorene	mg/kg	310 {N}	4,100 {N}		<0.41 [<0.40]	<0.43	<0.22 J	<0.26 J	NA	NA	NA	<0.20 J	NA	NA	<0.23	<0.21	<0.22	0.12 J	<0.20	<0.21
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	<0.21	<0.22	0.39	<0.20	<0.21
Naphthalene	mg/kg	160 {N}	2,000 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	<0.20	NA	NA	<0.23	0.0092 J	<0.22	<0.22	<0.20	<0.21
Pentachlorophenol	mg/kg	5.3 {C}	24 {C}		<2.1 [<2.0]	<2.2	<1.1	<1.3	NA	NA	NA	<1.0	NA	NA	<1.1	<1.0	<1.1	<1.1	< 0.99	<1.0
Phenanthrene	mg/kg	230 (N)	3,100 {N}		<0.41 [<0.40]	<0.43	<0.22	<0.26	NA	NA	NA	0.012 J	NA	NA	<0.23	0.038 J	0.037 J	1.1	<0.20	<0.21
		000 (N)	2 400 (NI)		<0.41 [<0.40]	< 0.43	<0.22	<0.26	NA	NA	NA	0.035 J	NA	NA	< 0.23	0.046 J	0.040 J	1.2	<0.20	<0.21
Pyrene	mg/kg	230 (N)	3,100 {N}		<u> </u>	VU.73	V0.22	10.20				0.000 0			-0.20	0.0.00	0.0.00		10.20	10.2.

See foot notes on last page

Historical Soil Sampling Results, Rail Yard

New River Unit, Radford Army Ammunition Plant, Radford, Virginia

											rtadioid, viig									
Sample Name:		Adjusted	Adjusted	Facility-Wide	RYSB7A	RYSB7B	RYSB08A	RYSB08B	RYSB09A	RYSB09B	RYSB09C	RYSS01	RYSS02	RYSS03	RYSS04	RYSS05	RYSS06	RYSS07	RYSS08	RYSS09
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 4	4 - 6	0 - 0.5	4 - 6	0 - 0.5	4 - 6	8 - 10	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	08/03/98	08/03/98	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	06/17/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02
Inorganics																				
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	8,180 [10,400]	11,400	35,800 J	18,200 J	NA	NA	NA	22,000 J	16,100 J	NA	39,000	19,300	31,800	25,100	28,000	24,800
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.630 [<0.580]	<0.640	<0.660 L	0.310 B	NA	NA	NA	0.310 L	0.270 B	NA	0.280 J	0.240 J	0.320 J	0.460 J	0.210 J	<0.620 L
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	3.20 K [3.60 K]	5.50 K	10.6 L	5.82 L	NA	NA	NA	7.70 L	1.39 L	NA	8.83 J	6.75 J	13.2 J	6.11 J	8.58 J	5.15 J
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	52.7 K [49.5 K]	75.3 K	50.6	32.6	NA	NA	NA	42.0	71.6	NA	36.3	44.1	30.4	49.4	42.7	33.6
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.40 [1.50]	2.10	1.39	1.03	NA	NA	NA	2.23	0.890	NA	1.50	0.910 B	1.46	1.56	0.800 B	1.63
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.130 [<0.120]	<0.130	<0.130	< 0.150	NA	NA	NA	<0.120	<0.100	NA	< 0.130	0.0900 J	<0.120	<0.130	0.260	<0.120
Calcium	mg/kg				1,290 [1,320]	2,100	1,310	60.0	NA	NA	NA	2,960	100,000	NA	1,060 J	1,130 J	731 J	1,410 J	685 J	4,860 J
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	14.7 [18.7]	16.3	38.9 K	19.0 K	NA	NA	NA	34.4 K	25.7 K	NA	59.0 L	23.9 L	52.9 L	35.1 L	29.5 L	32.2 L
Cobalt	mg/kg		1	72.3	25.9 K [11.8 K]	8.20 K	30.0 J	32.9 J	NA	NA	NA	23.9 J	9.42 J	NA	16.4 J	12.1 J	9.38 J	19.0 J	7.23 J	19.5 J
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	4.50 B [5.80 B]	10.5 K	30.2 J	35.1 J	NA	NA	NA	27.6 J	14.6 J	NA	33.5 J	15.8 J	31.3 J	27.6 J	18.5 J	25.2 J
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	14,900 [19,300]	18,500	42,600	25,700	NA	NA	NA	37,900	16,300	NA	50,100	20,400	48,400	38,200	27,900	35,700
Lead	mg/kg	400	750	26.8	33.9 L [20.7 L]	15.5 L	27.0	11.7	NA	NA	NA	23.8	14.0	NA	25.1 K	26.9 K	20.9 K	26.3 K	13.0 K	23.2 K
Magnesium	mg/kg				617 J [769]	1,780	2,100	2,330	NA	NA	NA	2,980	55,500	NA	1,870	2,040	1,340	1,960	1,480	3,720
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	709 K [502 K]	395 K	384 J	356 J	NA	NA	NA	309 J	189 J	NA	168 J	218 J	92.7 J	235 J	105 J	278 J
Mercury	mg/kg	2.35	30.66	0.13	0.410 [<0.120]	<0.130	0.110	< 0.0700	NA	NA	NA	0.0600	0.0200 J	NA	0.190	0.0500 J	0.100	0.0700	0.0600	0.0800
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	3.90 K [5.00 K]	10.6 K	31.8 J	33.9 J	NA	NA	NA	26.6 J	14.9 J	NA	27.7	16.1	29.4	29.2	17.0	24.5
Potassium	mg/kg				282 K [384 K]	545 K	1,550	1,420	NA	NA	NA	1,930	4,570	NA	1,440 J	1,530 J	1,720 J	1,310 J	1,440 J	1,030 J
Selenium	mg/kg	39.1 {N}	511 {N}		<0.630 [<0.580]	< 0.640	<1.32	<1.57 L	NA	NA	NA	<1.22	0.430 B	NA	<1.35 L	<1.25 L	<1.27 L	<1.31 L	<1.20 L	<1.25 L
Sodium	mg/kg				35.4 B [32.5 B]	42.9 B	21.2 B	9.54 B	NA	NA	NA	14.6 B	113	NA	16.0 J	15.0 J	13.0 J	15.0 J	19.0 J	19.0 J
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.890 B [<0.230 L]	<0.250 L	0.390 J	0.490	NA	NA	NA	0.300 J	0.180 J	NA	0.560	0.250 J	0.310 J	0.390 J	0.220 J	0.270 J
Vanadium	mg/kg	7.8 (N)	102.2 {N}	108 {N}	34.2 K [38.6 K]	34.9 K	75.3	46.5	NA	NA	NA	62.3	32.0	NA	90.4 J	39.8 J	78.6 J	61.7 J	49.5 J	63.1 J
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	7.10 [8.90]	15.6	39.2 J	33.9 J	NA	NA	NA	31.1 J	41.1 J	NA	50.8 J	41.0 J	92.0 J	49.6 J	21.0 J	31.9 J
Miscellaneous		•	•	•			•	•	•			•		•						
рН	pH Units				NA	NA	6.85 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg				NA	NA	1,880	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

See footnotes on last page.

Historical Soil Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								New Kivei O	riit, Kaulolu Al	my Ammunin	on Plant, Radf	oru, virgiriia		
Sample Name:		Adjusted	Adjusted	Facility-Wide	RYSS10	RYSS11	RYSS12	RYSS13	RYSS14	RYSS15	RYSS16	RYTR01	RYTR02	RYTR03
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02	07/25/02	06/18/02	06/18/02	06/18/02
Explosives								•	•					·
2,4-Dinitrotoluene	mg/kg	16 {N}	200 (N)		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA
2,6-Dinitrotoluene	mg/kg	7.8 {N}	100 (N)		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA
4-Amino-2,6-Dinitrotoluene	mg/kg				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA
Herbicides														
None Detected						NA	NA	NA	NA		NA	NA	NA	NA
Organochlorine Pesticides														
4,4'-DDE	mg/kg	1.9 {C}	8.4 {C}		<0.00084	NA	NA	NA	NA	<0.00085	NA	NA	NA	NA
Alpha-BHC	mg/kg	0.1 {C}	0.45 {C}		0.00077 J	NA NA	NA NA	NA NA	NA NA	0.00066 J	NA NA	NA	NA	NA
Alpha-Chlordane	mg/kg				<0.00084	NA	NA NA	NA	NA NA	<0.00085	NA	NA	NA	NA
Beta-BHC	mg/kg	0.36 (C)	1.6 {C}		0.00025 J	NA	NA NA	NA	NA NA	<0.00085	NA	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		<0.00084	NA	NA	NA	NA	<0.00085	NA	NA	NA	NA
Endrin Aldehyde	mg/kg				<0.00084	NA	NA	NA	NA	<0.00085	NA	NA	NA	NA
PAHs	3 3						ı						ı	ı
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		0.00098 J	0.00093 J	0.0012 J	0.0015 J	0.0019 J	<0.0022	0.0011 J	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		<0.0022	<0.0021	<0.0022	<0.0021	0.0011 J	<0.0022	<0.0023	NA	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		<0.0022	<0.0021	<0.0022	0.00097 J	<0.002	<0.0022	<0.0023	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 (N)		<0.0022	<0.0021	<0.0022	0.0031	0.0021	<0.0022	<0.0023	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.0034	0.0019 J	0.0014 J	0.012	0.0085	<0.0022	<0.0023	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.0018 J	0.0018 J	0.0013 J	0.011	0.0078	<0.0022	<0.0023	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.0047	0.0031	0.004	0.034	0.014	<0.0022	<0.0023	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				0.0028	0.002 J	0.0022	0.016	0.008	<0.0022	<0.0023	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		0.0012 J	0.00089 J	0.0011 J	0.0098	0.0041	<0.0022	<0.0023	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		0.003	0.0021	0.0027	0.023	0.0091	< 0.0022	< 0.0023	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		< 0.0022	<0.0021	< 0.0022	0.0034	0.0018 J	< 0.0022	< 0.0023	NA	NA	NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		0.0036	0.0039	0.0043	0.036	0.022	< 0.0022	< 0.0023	NA	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		<0.0022	<0.0021	<0.0022	<0.0021	0.0011 J	<0.0022	< 0.0023	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		0.0028	0.0021	0.0023	0.017	0.0085	<0.0022	<0.0023	NA	NA	NA
Naphthalene	mg/kg	160 {N}	2,000 {N}		0.0012 B	0.0012 B	0.0015 B	0.0021 B	0.0019 B	<0.0022	0.0015 B	NA	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		0.0022	0.0021	0.0018 J	0.0093	0.012	<0.0022	<0.0023	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		0.0028	0.0027	0.0028	0.023	0.013	<0.0022	<0.0023	NA	NA	NA
PCBs														
Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		<0.040	0.10	<0.040	<0.040	< 0.030	<0.040	<0.040	<0.030	0.22	<0.030
Volatile Organics														
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		<0.0057	<0.0061	<0.0064	<0.0067	< 0.0053	<0.0057	<0.0060	NA	NA	NA
3-Octanone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		<0.0057 L	0.040 B	<0.0064 L	<0.0067 L	<0.0053 L	<0.0057 L	<0.0060 L	NA	NA	NA
Ethanol	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA		
Methylene Chloride	mg/kg								0.00097 B	< 0.0057			NA	NA
Semivolatile Organics		85 (C)	380 (C)		<0.0057	<0.0061	<0.0064	<0.0067	0.00001 D	₹0.0001	<0.0060	NA	NA NA	NA NA
		1							l.			NA	NA	NA
2,4-Dinitrotoluene	mg/kg	16 {N}	200 {N}		<0.22	<0.21	<0.22	<0.21	<0.20	<0.22	<0.23	NA NA	NA NA	NA NA
2-Methylnaphthalene	mg/kg mg/kg	16 {N} 31 {N}	200 {N} 410 {N}		<0.22 <0.22	<0.21 <0.21	<0.22 <0.22	<0.21 <0.21	<0.20 <0.20	<0.22 <0.22	<0.23 <0.23	NA NA NA	NA NA NA	NA NA NA
2-Methylnaphthalene Acenaphthene	mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N}	200 {N} 410 {N} 6,100 {N}		<0.22 <0.22 <0.22	<0.21 <0.21 <0.21	<0.22 <0.22 <0.22	<0.21 <0.21 <0.21	<0.20 <0.20 <0.20	<0.22 <0.22 <0.22	<0.23 <0.23 <0.23	NA NA NA	NA NA NA	NA NA NA
2-Methylnaphthalene Acenaphthene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N}		<0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23	NA NA NA NA	NA NA NA NA	NA NA NA NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N}		<0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA	NA	NA NA NA NA NA NA NA NA NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA	NA	NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA	NA	NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA N	NA N	NA
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C} 31,000 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 39 {C} 410,000 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22 <0.22 <1.1	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.021 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <1.23 <0.23 <1.1	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C} 31,000 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.11 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <1.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C} 31,000 {N} 46 {C} 32 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 3.9 {C} 39 {C} 410,000 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22 <0.22 <1.1	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.021 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <1.23 <0.23 <1.1	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 2.2 {C} 31,000 {N} 46 {C} 32 {C} 22 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.11 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C} 31,000 {N} 46 {C} 32 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 2.2 {C} 31,000 {N} 46 {C} 32 {C} 0.022 {C} 0.022 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.22 {C} 2.2 {C} 31,000 {N} 46 {C} 32 {C} 0.022 {C} 0.022 {C} 7.8 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 31,000 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 31,000 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Fluoranthene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 7,8 {N} 6,300 {N} 310 {N} 310 {N} 0.22 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N} 4,100 {N} 3.9 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <1.1 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.21 	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Fluoranthene Fluorene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 0.022 {C} 0.022 {C} 1,000 {N} 46 {N} 780 {N} 310 {N} 310 {N} 0.22 {C} 160 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA N	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Pentachlorophenol	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 31,000 {N} 46 {N} 32 {C} 22 {C} 0.022 {C} 16,300 {N} 310 {N} 310 {N} 310 {N} 5.3 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 24 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.2	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 <0.24 <0.25 	NA	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Pentachlorophenol Phenanthrene	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 0.022 {C} 0.022 {C} 1,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 0.022 {C} 1,000 {N} 46 {N} 5,300 {N} 780 {N} 10 {N} 0.22 {C} 160 {N} 5,3 {C} 230 {N}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 24 {C} 3,100 {N}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 	NA	NA N	NA N
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzoic Acid bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Di-n-Butylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Pentachlorophenol	mg/kg	16 {N} 31 {N} 470 {N} 230 {N} 2,300 {N} 0.22 {C} 0.022 {C} 0.22 {C} 31,000 {N} 46 {C} 32 {C} 22 {C} 0.022 {C} 31,000 {N} 46 {N} 32 {C} 22 {C} 0.022 {C} 16,300 {N} 310 {N} 310 {N} 310 {N} 5.3 {C}	200 {N} 410 {N} 6,100 {N} 3,100 {N} 3,100 {N} 31,000 {N} 3.9 {C} 0.39 {C} 39 {C} 410,000 {N} 200 {C} 140 {C} 390 {C} 100 {N} 82,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N} 24 {C}		<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	<0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <1.0 0.087 B <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.2	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.21 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22	 <0.23 <0.24 <0.25 	NA	NA N	NA N

See foot notes on last page

Historical Soil Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

								11011 111101 0	IIII, Kadioid Ai	ing ranniana	on riant, rtaai	iora, virginia		
Sample Name: Sample Depth (ft): Date Collected:	Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	RYSS10 0 - 0.5 07/25/02	RYSS11 0 - 0.5 07/25/02	RYSS12 0 - 0.5 07/25/02	RYSS13 0 - 0.5 07/25/02	RYSS14 0 - 0.5 07/25/02	RYSS15 0 - 0.5 07/25/02	RYSS16 0 - 0.5 07/25/02	RYTR01 0 - 0.5 06/18/02	RYTR02 0 - 0.5 06/18/02	RYTR03 0 - 0.5 06/18/02
Inorganics														
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	30,300	20,400	31,100	30,300	19,500	43,600	12,700	NA	NA	NA
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.630 L	<0.600 L	0.580 J	0.340 J	0.270 J	<0.630 L	0.240 J	NA	NA	NA
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	10.7 J	7.23 J	9.31 J	11.6 J	7.58 J	9.86 J	3.33 J	NA	NA	NA
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	45.3	52.3	48.2	45.5	42.9	57.2	11.1	NA	NA	NA
Beryllium	mg/kg	15.6 (N)	204.4 {N}	1.02 {N}	2.46	1.72	1.47	1.42	0.930 B	1.84	1.50	NA	NA	NA
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.120	<0.120	<0.120	<0.120	0.0600 J	<0.120	<0.130	NA	NA	NA
Calcium	mg/kg				38,900 J	611 J	1,550 J	1,510 J	922 J	1,670 J	1,460 J	NA	NA	NA
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	32.0 L	30.1 L	36.3 L	45.2 L	33.9 L	48.8 L	28.9 L	NA	NA	NA
Cobalt	mg/kg			72.3	32.5 J	38.3 J	25.1 J	14.8 J	36.3 J	8.34 J	9.59 J	NA	NA	NA
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	27.4 J	20.5 J	26.6 J	24.8 J	11.6 J	25.6 J	32.8 J	NA	NA	NA
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	33,000	26,100	35,800	39,800	25,700	46,200	43,100	NA	NA	NA
Lead	mg/kg	400	750	26.8	37.1 K	22.6 K	32.6 K	29.3 K	19.5 K	21.5 K	14.0 K	NA	NA	NA
Magnesium	mg/kg				26,500	2,170	1,710	1,740	961	2,950	760	NA	NA	NA
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	288 J	395 J	329 J	276 J	791 J	133 J	107 J	NA	NA	NA
Mercury	mg/kg	2.35	30.66	0.13	0.100	0.0300 J	0.120	0.130	0.0400 J	0.160	0.110	NA	NA	NA
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	27.1	17.0	27.7	24.6	12.6	32.5	40.3	NA	NA	NA
Potassium	mg/kg				1,540 J	2,040 J	1,250 J	1,530 J	974 J	2,160 J	439 J	NA	NA	NA
Selenium	mg/kg	39.1 {N}	511 {N}		<1.27 L	<1.21 L	<1.28 L	<1.21 L	<1.17 L	<1.28 L	<1.33 L	NA	NA	NA
Sodium	mg/kg				58.0 J	21.0 J	26.7 J	20.0 J	20.0 J	35.2 J	5.10 J	NA	NA	NA
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.400	0.270 J	0.360 J	0.330 J	0.170 J	0.260 J	0.0900 J	NA	NA	NA
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 (N)	63.4 J	48.1 J	65.5 J	69.9 J	53.6 J	89.3 J	41.5 J	NA	NA	NA
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	35.8 J	26.2 J	32.5 J	26.5 J	23.6 J	31.8 J	49.8 J	NA	NA	NA
Miscellaneous														
pH	pH Units				NA									
Total Organic Carbon	mg/kg				NA									

RBC Risk Based Concentration.

Carcinogen.

{C} {N} Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

Constituent concentration quanitified as estimated.

K Estimated concentration bias high. L Estimated concentration bias low.

NA Not Analyzed.

ND Not Detected (no detection limit given).

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

Inorganics constituent concentration exceeds Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Historical Sediment Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Adjusted Adjusted Facility-Wide Sample Name: SD-03 SD-04 **SD-05** SL-05 SL-08 SL-108 RYSD01 RYSD03 RYSD04 RYSD05 RYSD06 RYSD07 RYSD08 RYSD09 RYSD10 RYSD12 RYSD13 Soil RBC Soil RBC **Background** Sample Depth (ft) 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 0 - 0 5 Date Collected: Units (Residential (Industrial) Point 04/01/98 04/01/98 04/01/98 06/04/97 03/30/98 03/30/98 06/17/02 07/08/02 07/08/02 06/27/02 06/18/02 06/17/02 06/18/02 06/18/02 06/18/02 06/25/02 06/25/02 Explosives Nitroglycerine mg/kg 10 (N) NA NA NA NA NA 0.57 J 0.26 J < 0.37 < 0.35 < 0.32 <0.95 <0.53 0.78 (N) - -NA < 0.36 < 0.93 < 0.36 < 0.36 Pentaerythritol Tetranitrate mg/kg NA NA NA NA NA NA < 0.93 < 0.52 < 0.37 0.13 J 0.23 J < 0.95 < 0.53 - -< 0.36 < 0.71 < 0.36 < 0.36 Herbicides 2.4.5-T mg/kg 78 (N) 1,000 {N} NA NA NA NA NA < 0.0123 < 0.0239 0.0334 0.00567 J < 0.0125 < 0.012 0.0114 J <1.08 L <0.12 < 0.0159 <0.0179 NA NA 0.00976 J 2,4,5-TP mg/kg 63 {N} 820 (N) - -NA NA NA NA < 0.0123 < 0.0239 J 0.104 J < 0.0175 < 0.012 < 0.0118 <1.08 L < 0.12 < 0.0159 < 0.0179 2,4-D 78 (N) 1,000 {N} NA NA NA NA NA NA <0.0246 < 0.0625 < 0.0349 < 0.024 0.209 <2.17 L < 0.0317 <0.0358 mg/kg < 0.0478 < 0.025 < 0.24 Dalapon mg/kg 230 (N 3,100 {N} NA NA NA NA NA NA < 0.123 < 0.239 < 0.313 < 0.175 <0.125 0.107 J <0.118 <10.8 L <1.2 < 0.159 <0.179 Dicamba 230 (N) 3,100 {N} NA NA NA NA NA NA < 0.0246 <0.0478 L 0.0497 J < 0.0349 <0.025 < 0.024 < 0.0235 <2.17 L <0.24 < 0.0317 <0.0358 mg/kg - -Dichlorprop NA NA NA NA NA NA < 0.0246 <0.0478 L 0.353 J < 0.0349 < 0.025 < 0.024 < 0.0235 <2.17 L < 0.24 < 0.0317 < 0.0358 mg/kg MCPP mg/kg 7.8 (N) 100 (N) NA NA NA NA NA NA <12.3 <23.9 <31.3 <17.5 <12.5 <12 3.53 J <1,080 L <120 <15.9 <17.9 - -Organochlorine Pesticides 4,4'-DDD NA NA NA NA NA < 0.00819 <0.0016 <0.00208 < 0.00116 0.00071 J <0.008 <0.00078 < 0.00072 <0.0008 0.00194 0.00174 mg/kg NA 4,4'-DDE 1.9 (C) 8.4 (C) NA NA NA NA NA < 0.00819 < 0.0016 0.00245 B < 0.00116 0.00031 B <0.008 0.00112 B 0.00069 B 0.00102 B 0.0084 0.0052 mg/kg - -4,4'-DDT ma/ka 1.9 (C) 8.4 (C) --NA NA NA R NA NA < 0.00819 <0.0016 J 0.00293 B < 0.00116 0.00055 B <0.008 <0.00078 0.00195 0.004 0.0031 0.00281 Alpha-BHC NA < 0.00819 < 0.00078 0.00055 J 0.45 {C} NA NA NA NA NA 0.00059 J < 0.00208 < 0.00116 < 0.00083 <0.008 < 0.00072 < 0.00106 < 0.0012 0.1 {C} mg/kg - -Alpha-Chlordane mg/kg NA NA NA NA NA NA < 0.00819 < 0.0016 < 0.00208 < 0.00116 <0.00083 < 0.008 < 0.00078 0.0101 0.00835 0.00153 0.00087 J NΑ NA NΑ NΑ NΑ NA < 0.0012 Delta-BHC < 0.00819 < 0.0016 < 0.00208 < 0.00116 < 0.00083 <0.008 < 0.00078 0.00099 0.0012 < 0.00106 mg/kg Dieldrin mg/kg 0.04 (C) 0.18 (C) - -NA NA NA NA NA NA < 0.00819 < 0.0016 < 0.00208 < 0.00116 < 0.00083 < 0.008 < 0.00078 0.00315 0.0041 0.00211 0.00174 NA Endosulfan II mg/kg - -NA NA NA NA NA < 0.00819 < 0.0016 < 0.00208 < 0.00116 0.00072 J < 0.008 < 0.00078 0.00025 J 0.00052 J < 0.00106 < 0.0012 31 {N} Endrin mg/kg 2.4 {N} - -NA NA NA NA NA NA < 0.00819 < 0.0016 <0.00208 < 0.00116 < 0.00083 <0.008 <0.00078 < 0.00072 0.0125 < 0.00106 < 0.0012 Endrin Aldehyde mg/kg ND 0.04 ND 0.01 NA NA < 0.00819 < 0.0016 < 0.00208 < 0.00116 <0.00083 <0.008 <0.00078 < 0.00072 <0.0008 < 0.00106 < 0.0012 Endrin Ketone mg/kg - -NA NA NA NA NA NA < 0.00819 < 0.0016 <0.00208 < 0.00116 < 0.00083 <0.008 <0.00078 < 0.00072 0.00203 < 0.00106 < 0.0012 Gamma-BHC (Lindane) 0.49 (C) 2.2 {C} NA NA NA NA NA NA < 0.00819 <0.0016 <0.00208 < 0.00116 0.00097 B <0.008 <0.00078 < 0.00072 <0.0008 < 0.00106 <0.0012 mg/kg - -Gamma-Chlordane NA NA NA NA NA NA < 0.00819 < 0.0016 < 0.00208 < 0.00116 < 0.00083 <0.008 < 0.00078 0.0116 0.013 0.00406 0.00081 J mg/kg - -<0.00208 <0.00083 0.14 (C) 0.64 (C) NA NA NA NA NA NA < 0.00819 < 0.00116 <0.008 < 0.00078 0.00084 0.00213 < 0.00106 < 0.0012 Heptachlor mg/kg < 0.0016 Heptachlor Epoxide 0.07 (C) 0.31 {C} NA NA NA NA NA NA < 0.00819 <0.00208 < 0.00083 < 0.00078 0.00726 0.00399 mg/kg - -< 0.0016 < 0.00116 <0.008 < 0.00106 < 0.0012 PAHs 2-Methylnaphthalene 410 (N) NA NA NA NA 0.0045 0.0022 B 0.04 0.0014 B 0.012 NA NA mg/kg NA NA NA NA NA 470 (N) 6,100 {N} NA NA NA NA NA NA 0.0019 B 0.025 B 0.059 L NA NA NA NA NA NA Acenaphthene < 0.0041 < 0.003 mg/kg 3,100 {N} NA NA NA NA NA NA 0.0038 NA NA NA NA NA NA Acenaphthylene mg/kg 230 (N) - -0.026 0.0026 J 0.026 < 0.003 31,000 {N} 2,300 (N) NA NΑ NΑ NΑ NΑ NA 0.0093 0.081 L NA NA NΑ NΑ NΑ NA 0.0034.1 0.0093 < 0.003 Anthracene mg/kg NA Benzo(a)anthracene mg/kg 0.22 (C) 3.9 (C) - -NA NA NA NA NA NA 0.09 0.013 0.0038 J < 0.003 0.19 L NA NA NA NA NA NA Benzo(a)pyrene mg/kg 0.022 (C) 0.39 {C} - -NA NA NA NA NA NA 0.11 0.017 0.0058 < 0.003 0.17 L NA NA NA NA NA 3.9 (C) NA NA NA NA NA NA 0.033 0.011 < 0.003 NA NA NA NA NA NA Benzo(b)fluoranthene mg/kg 0.22 {C} 0.18 0.25 L Benzo(g,h,i)perylene NA NA NA NA NA NA 0.079 J 0.0085 0.0038 < 0.003 0.1 L NA NA NA NA NA NA mg/kg Benzo(k)fluoranthene 2.2 (C) 39 (C) - -NA NA NA NA NA NA 0.048 0.031 0.0029 J < 0.003 0.08 L NA NA NA NA NA NA mg/kg 22 (C) 390 (C) NA NA NA NA NA NA 0.097 0.014 0.0053 < 0.003 0.17 NA NA NA NA NA NA Chrysene mg/kg - -0.022 (C) 0.39 {C} NA NA NA NA NA NA 0.017 J < 0.0041 < 0.0053 0.026 L NA NA NA NA NA NA Dibenzo(a.h)anthracene < 0.003 mg/kg - -NA NA Fluoranthene mg/kg 310 (N 4,100 {N} 0.14 0.019 0.0079 < 0.003 0.44 L Fluorene 4,100 {N} NA NA NA NA 0.0035 0.0461 NA NA NA NA NA NA 310 (N) - -NA NA < 0.0041 0.019 < 0.003 mg/kg 3.9 {C} NA NA NA NA Indeno(1,2,3-cd)pyrene mg/kg 0.22 {C} NA NA NA NA NA 0.084 J 0.01 0.004 J < 0.003 0.12 L NA NA NA Naphthalene mg/kg 160 (N) 2,000 {N} - -NA NA NA NA NA NA 0.005 B 0.0049 B 0.043 < 0.003 0.027 L NA NA NA NA NA NA NA Phenanthrene 230 (N) 3,100 {N} NA NA NA NA NA NA 0.045 0.0065 0.01 < 0.003 0.36 L NA NA NA NA NA mg/kg - -NA 230 (N) 3,100 {N} NA NA NA NA NA NA 0.15 0.011 J 0.3 L NA NA NA NA NA Pyrene mg/kg 0.027 J < 0.003 **PCBs** Aroclor-1254 mg/kg 0.16 (C) 1.4 (C) NA NA NA 0.22 0.050 < 0.040 < 0.070 < 0.10 < 0.050 <0.040 < 0.030 < 0.030 < 0.030 <0.040 < 0.050 < 0.050 NA Volatile Organics 2-Butanone 61.000 {N} < 0.0063 ND < 0.0087 < 0.0079 < 0.0090 mg/kg 4.700 (N) 0.010 ND NA NA NA < 0.0061 < 0.012 0.10 J< 0.0060 < 0.0059 < 0.0054 < 0.0060 Acetone mg/kg 92,000 {N} 0.0030 J 0.048 ND NA NA NA < 0.0061 0.049 B 0.53 B 0.042 B < 0.0063 <0.0060 < 0.0059 < 0.0054 <0.0060 <0.0079 J <0.0090 J 10.000 {N} NA NA NA NA 0.0022 B 780 (N) NA NA < 0.0061 0.0010 B 0.00062 E < 0.0063 < 0.0060 < 0.0059 < 0.0054 < 0.0060 < 0.0079 < 0.0090 Carbon Disulfide mg/kg 0.0010 B Methylene Chloride mg/kg 85 (C) 380 (C) 0.0030 B 0.0010 B 0.0030 B 0.0030 B 0.0030 B < 0.0061 < 0.012 < 0.016 <0.0087 < 0.0063 < 0.0060 < 0.0059 < 0.0054 < 0.0060 < 0.0079 <0.0090 Semivolatile Organics 2-Methylnaphthalene mg/kg 31 {N} 410 (N) --NA NA NA NA NA NA < 0.20 < 0.40 < 0.52 < 0.30 <0.21 <0.20 <0.20 0.013 J < 0.20 < 0.27 < 0.30 I-Methylphenol ma/ka 39 (N) 510 (N) NA NA NA NA NA NA < 0.20 < 0.40 < 0.52 0.036 B <0.21 L < 0.20 <0.20 L <0.18 L <0.20 L <0.27 L <0.30 L Acenaphthylene 230 (N) 3,100 {N} NA NA NA NA NA NA 0.028 J < 0.40 < 0.52 < 0.30 < 0.21 < 0.20 <0.20 < 0.18 < 0.20 < 0.27 < 0.30 mg/kg 2,300 (N) 31,000 (N) NA NA NA NA NA NA 0.013 J < 0.40 < 0.52 < 0.30 <0.21 0.011 J <0.20 <0.18 < 0.20 < 0.27 < 0.30 Anthracene mg/kg --Benzo(a)anthracene mg/kg 0.22 (C) 3.9 (C) NA NA NA 0.070 J NA NA 0.080.10.045 J< 0.52 < 0.30 0.024 J0.023 J <0.20 0.019 J 0.024 J0.037 J 0.027 J 0.022 (C) 0.39 (C) NA NA NA NA 0.070 J NA 0.14 J 0.042 J < 0.52 <0.30 J 0.024 J 0.030 J < 0.20 0.019 J 0.033 J < 0.27 < 0.30 Benzo(a)pyrene mg/kg - -NA NA NA NA Benzo(b)fluoranthene mg/kg 3.9 {C} 0.070 J NA 0.21 0.048 J < 0.52 < 0.30 J 0.039 J 0.10 J <0.20 0.038 J 0.045 J < 0.27 < 0.30 0.22 (C) NΑ NΑ NΑ NA NΑ NA 0.11.I 0.051.1 < 0.52 0.047.1 < 0.30 Benzo(g,h,i)perylene mg/kg <0.30.1 <0.21 <0.20 <0.18 < 0.20 <0.27 39 (C) NA Benzo(k)fluoranthene mg/kg 2.2 (C) NA NA NA 0.070 J NA 0.067 J 0.026 J < 0.52 <0.30 J 0.011 J 0.027 J <0.20 0.011 J 0.014 J < 0.27 < 0.30 410,000 {N} NA NA NA Benzoic Acid mg/kg 31,000 (N) - -NA NA NA <1.0 0.28 B < 2.6 <1.4 <1.0 <1.0 < 0.98 < 0.90 <1.0 < 1.3 <1.5 ND ND NA bis(2-Ethylhexyl)phthalate mg/kg 46 (C) 200 (C) 0.10 J 0.30 J NA 0.20 B 0.10 B <0.52 <0.30 0.16 B 0.22 B 0.16 B 0.33 B 0.31 B 0.088 B 0.047 B

See footnotes on last page.

Historical Sediment Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

												,	TT latit, Madio	-, 3								
Sa	mple Name:		Adjusted	Adjusted	Facility-Wide	SD-03	SD-04	SD-05	SL-05	SL-08	SL-108	RYSD01	RYSD03	RYSD04	RYSD05	RYSD06	RYSD07	RYSD08	RYSD09	RYSD10	RYSD12	RYSD13
Sampl	le Depth (ft):		Soil RBC	Soil RBC	Background							0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Dat	e Collected:	Units	(Residential)	(Industrial)	Point	04/01/98	04/01/98	04/01/98	06/04/97	03/30/98	03/30/98	06/17/02	07/08/02	07/08/02	06/27/02	06/18/02	06/17/02	06/18/02	06/18/02	06/18/02	06/25/02	06/25/02
Semivolatile Or	ganics (contin	nued)																				
Chrysene		mg/kg	22 {C}	390 (C)		NA	NA	NA	0.090 J	NA	NA	0.11 J	0.035 J	< 0.52	< 0.30	0.019 J	0.060 J	< 0.20	0.019 J	0.038 J	0.033 J	0.026 J
Di-n-Butylphthala	ate	mg/kg	780 (N)	10,000 {N}		NA	NA	NA	NA	NA	NA	<0.20	< 0.40	< 0.52	< 0.30	<0.21	<0.20	<0.20	<0.18	0.069 B	<0.27	< 0.30
Fluoranthene		mg/kg	310 {N}	4,100 {N}		ND	0.060 J	ND	0.10 J	0.070 J	0.060 J	0.18 J	0.071 J	<0.52	< 0.30	0.039 J	0.083 J	<0.20	0.025 J	0.063 J	0.066 J	0.061 J
Indeno(1,2,3-cd)	pyrene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	0.093 J	0.039 J	<0.52	<0.30 J	<0.21	0.044 J	<0.20	<0.18	<0.20	<0.27	< 0.30
Phenanthrene		mg/kg	230 (N)	3,100 {N}		NA	NA	NA	0.090 J	NA	NA	0.066 J	0.037 J	<0.52	< 0.30	0.022 J	0.019 J	<0.20	0.021 J	<0.20	0.046 J	0.051 J
Pyrene		mg/kg	230 (N)	3,100 {N}		NA	NA	NA	0.12 J	0.040 J	0.040 J	0.21	0.060 J	<0.52	< 0.30	0.036 J	0.068 J	<0.20	0.026 J	0.054 J	0.066 J	0.064 J
Inorganics																						
Aluminum		mg/kg	7,800 {N}	100,000 {N}	40,041	9,370	11,000	27,000	8,190	21,600	32,300	18,200 J	14,600	14,000	20,900 J	17,000	26,700 J	26,000	12,500	21,100	9,790	21,600
Antimony		mg/kg	3.13 {N}	40.88 {N}		NA	NA	NA	1.00	NA	NA	0.440 L	0.480 B	0.620 B	<0.870 L	0.340 B	0.400 B	0.540 L	0.450 L	0.600 L	<0.790 L	<0.890 L
Arsenic		mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	4.90	4.60	2.20	22.3	9.20	19.4	4.68 L	4.90 J	2.76 J	8.92 J	4.66 J	10.1 L	11.8 J	4.65 J	11.8 J	2.76 J	2.56 J
Barium		mg/kg	1,564 {N}	20,440 {N}	209 (N)	81.7	113	52.4	69.1 J	75.2	234	52.6	43.9	100	105	47.1	38.6	68.0	36.5	49.1	60.4	70.2
Beryllium		mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.600	0.800	1.30	1.10	1.10	1.30	1.10	1.22 J	0.680 J	0.990	0.940	0.960	1.67	0.530 B	0.670	0.860 B	0.910 B
Cadmium		mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	NA	NA	NA	NA	1.20	1.30	0.210	0.170 J	<0.310 J	<0.170	0.0900 J	0.170	<0.110	0.0800 J	0.110 J	0.160 J	0.0800 B
Calcium		mg/kg				176,000	129,000	3,200	14,900	8,550	7,090	2,920	16,400 J	107,000	3,980	1,850 J	1,970	3,150 J	64,500 J	6,200 J	90,100 J	78,600 J
Chromium		mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	24.6	21.2	32.9	103	34.0	40.0	25.3 K	80.9	15.6 J	34.8	22.9 J	29.3 K	79.5 J	17.7 J	31.2 J	47.4 J	27.7 J
Cobalt		mg/kg			72.3	5.90	6.60	11.8	26.8	18.4	21.4	13.2 J	13.5	6.70 J	11.3	10.4	13.9 J	15.0	7.07	9.53	7.50 J	8.20 J
Copper		mg/kg	312.9 {N}	4,088 {N}	53.5 (N)	47.6	21.9	20.9	373	34.4	36.8	19.8 J	16.2	12.0	15.5 J	17.8 L	23.4 J	22.8 L	10.8 L	18.9 L	6.67	14.4
Iron		mg/kg	5,500 {N}	72,000 {N}	50,962 {N}	12,500	14,200	22,000	120,000	42,600	46,500	25,000	23,900	11,500	24,200	22,600 J	30,500	79,600 J	14,900 J	30,000 J	27,400	19,200
Lead		mg/kg	400	750	26.8	10.9	11.2	28.4	161	94.1	102	29.7	21.3	17.1	22.1	19.4	22.2	33.0	19.7	30.3	21.7	16.0
Magnesium		mg/kg				3,600	2,840	3,590	4,560	2,430	3,040	2,120	4,660 J	3,940 J	3,670	4,090 J	1,560	5,030 J	42,500 J	4,490 J	3,910	3,840
Manganese		mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	446	1,220	90.9	908	249	281	258 J	175	302	188	260 J	180 J	831 J	242 J	304 J	451	365
Mercury		mg/kg	2.35	30.66	0.13	NA	NA	NA	NA	0.100	0.100	0.0500 J	0.0400 J	<0.150	0.0600 J	0.0400 J	0.0800	0.0800	0.0300 J	0.0500 J	< 0.0700	0.0700 J
Nickel		mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	6.70	9.00	19.7	116	17.2	21.5	16.8 J	16.7 J	7.50 J	16.6	16.9	22.8 J	24.5	10.3	15.6	7.05	12.2
Potassium		mg/kg				553	666	1,870	593	1,100	1,650	929	981	1,130	2,620	2,000	1,450	2,000	1,060	1,050	491	1,820
Selenium		mg/kg	39.1 {N}	511 {N}		ND	ND	1.70	NA	ND	0.600	0.420 B	<2.39	1.50 J	<1.75 L	<1.25 L	0.480 B	<1.18 L	<1.08 L	<1.20 L	<1.59 L	<1.79 L
Sodium		mg/kg				ND	110	ND	NA	NA	NA	14.6 B	15.0 B	35.0 B	76.4	13.0 B	17.8 B	19.0 B	70.8	17.0 B	76.8 J	86.6 J
Thallium		mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	NA	NA	NA	NA	ND	0.500	0.290 J	0.450 J	0.210 J	0.150 J	0.210 J	0.290 J	0.390 J	0.160 J	0.210 J	0.0700 B	0.110 B
Vanadium		mg/kg	7.8 {N}	102.2 {N}	108 {N}	26.1	20.8	50.7	72.2	72.0	77.0	46.4	50.7	28.8	48.3	42.0 J	57.8	110 J	31.3 J	60.1 J	49.9	31.0
Zinc		mg/kg	2,346 {N}	30,660 {N}	202 {N}	16.2	27.8	93.6	56.3	675	758	103 J	57.6 J	45.1 J	96.8 J	46.6 J	110 J	37.6 J	33.8 J	44.0 J	31.6 J	28.0 J

RBC Risk Based Concentration.

{C} {N} Carcinogen.

Noncarcinogen.

B (Inorganics) Constituent concentration quantified as estimated.

B (Organics) Constituent was detected in the associated method blank.

Constituent concentration quanitified as estimated.

Estimated concentration bias high.

L Estimated concentration bias low.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

3,980 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Table 3-15Historical Surface Water Sampling Results, Rail Yard New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sample Name:	Aquatic Life	Human Health All		WW-04	RYSW02	RYSW03	RYSW04	RYSW05	RYSW12	RYSW13	RYSW15
Date Collected:	Freshwater Chronic	Other Surface Waters	Units	03/30/98	06/27/02	07/15/02	07/15/02	06/27/02	06/25/02	06/25/02	07/11/02
Explosives									0 01 = 01 0 =		
m-Nitrotoluene			ug/L	NA	<0.52	<0.52	1.25	<0.52	0.4 J	0.38 J	NA
Nitrobenzene		1,900	ug/L ug/L	NA	<0.26	0.13 J	0.2 J	0.15 J	<0.26	<0.26	NA NA
Nitroglycerine			ug/L	NA	<0.20	0.13 J	<0.97	<0.97 L	<0.20 <0.97 L	<0.20 <0.97 L	NA NA
Herbicides			ug/L	IVA	₹0.57 L	0.013	<0.51	₹0.57 L	₹0.37 L	₹0.57 L	INA
2,4,5-TP			ug/L	NA	<0.1	0.05 J	<0.1	<0.1	<0.1	<0.1	NA
2,4-D			ug/L ug/L	NA NA	<0.1	<0.5	<0.1	<0.1	4.2	4.09	NA NA
MCPP			ug/L ug/L	NA	<125	<125	<125	<125	46.3 J	<125	NA NA
Organochlorine Pesticides			ug/L	14/1	\120	\120	\120	\120	40.00	\120	14/1
4,4'-DDT	0.001	0.0059	ua/l	NA	<0.02	<0.02	<0.02	<0.02	<0.02	0.01 J	NA
Delta-BHC	0.001	0.0059	ug/L ug/L	NA NA	<0.02	0.01 J	<0.02	<0.02	<0.02	<0.02	NA NA
Dieldrin	0.056	0.0014	ug/L ug/L	NA NA	<0.02	<0.02	<0.02	<0.02	0.00719 J	0.0063 J	NA NA
Endosulfan Sulfate	0.030	240	ug/L ug/L	NA	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	NA NA
Endrin Aldehyde		0.81	ug/L ug/L	NA NA	<0.02	<0.02	<0.02	0.03 0.01 J	<0.02	<0.02	NA NA
PAHs	- -	0.01	ug/L	11/7	\0.0 ∠	₹0.0 2	₹0.02	0.010	₹0.0 2	₹0.0 ∠	11/7
2-Methylnaphthalene			ug/l	NA	<0.05	<0.05	<0.05	0.02 J	NA	NA	NA
Naphthalene			ug/L	NA NA	0.05 0.02 B	0.03 B	0.03 B	0.02 J 0.02 B	NA NA	NA NA	NA NA
Perchlorate			ug/L	INA	0.02 B	0.03 B	0.03 B	0.02 B	INA	INA	INA
				NIA		_	_	1			
None Detected				NA							
PCBs						1	T.	1			T
None Detected				NA							NA
Volatile Organics											
Carbon Disulfide			ug/L	NA	<1.0	NA	NA	0.17 B	0.15 B	<1.0	NA
Chloroform		29,000	ug/L	NA	<1.0	NA	NA	<1.0	0.36 J	0.36 J	NA
Semivolatile Organics											
Benzoic Acid			ug/L	NA	<25	4.5 J	6.0 J	5.7 J	6.1 J	5.7 J	NA
bis(2-Ethylhexyl)phthalate			ug/L	NA	<5.0	4.8 B	5.8 B	<5.0	3.5 J	2.0 J	NA
Butylbenzylphthalate		5,200	ug/L	NA	<5.0	<5.0	<5.0	0.37 B	1.1 B	0.68 B	NA
Diethylphthalate		120,000	ug/L	NA	<5.0	<5.0	<5.0	<5.0	0.37 J	<5.0	NA
Di-n-Butylphthalate		12,000	ug/L	NA	<5.0	<5.0	<5.0	1.0 B	0.86 B	0.89 B	NA
Inorganics											
Aluminum			ug/L	258	<200	462	608	110 J	130 J	150 J	NA
Antimony		4,300	ug/L	NA	<5.00	0.360 B	0.580 B	0.390 B	<5.00	<5.00	NA
Barium			ug/L	NA	45.3	29.4	22.6	15.0 J	78.9	78.7	NA
Cadmium	1.1 {H}		ug/L	NA	<2.00	0.110 B	0.0600 B	<2.00	<2.00	<2.00	NA
Calcium			ug/L	26,600	59,500	35,200	21,100	15,300	57,700	59,000	NA
Chromium			ug/L	NA	<10.0	<10.0	5.50 J	<10.0	<10.0	<10.0	NA
Copper	9 {H}		ug/L	38.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	NA
Iron			ug/L	4,470	<50.0	513	553	127	237	210	NA
Lead	14 {H}		ug/L	31.0	<2.00	1.20 B	1.10 B	<2.00	0.990 B	0.880 B	NA NA
Magnesium			ug/L	6,530	26,400	25,600	25,800	26,400	16,900	17,100	NA NA
Manganese			ug/L	102 2,780	1.70 J	97.8	81.7	24.2	21.1	19.5	NA NA
Potassium Selenium	5	11 000	ug/L	2,780 NA	1,700 J 0.480 B	2,700 J <5.00	3,360 <5.00	3,120 <5.00	3,420 <5.00	3,590 <5.00	NA NA
		11,000	ug/L	NA NA	<10.0	5.20 B	8.30 B	< 10.0		< 10.0	NA NA
Silver Sodium			ug/L ug/L	1,660	950	908	8.30 B 895	1,000	<10.0 36,000	36,200	NA NA
Zinc	120 {H}	69,000	ug/L ug/L	274	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	NA NA
Miscellaneous	120 (П)	09,000	ug/L	214	\ 20.0	\ 20.0	\ _20.0	\ U.U	\ 20.0	\ 20.0	INA
			ma/l	NIA	2F7	102	150	1 1 7	244	240	177
Hardness			mg/L	NA	257	193	159	147	214	218	177

[{]H} Value has not been adjusted for hardness.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

J Constituent concentration quantified as estimated.

NA Not Analyzed

^{10.6} J Constituent concentration exceeds Virginia Surface Water Human Health Standards (All Other Surface Waters).

^{10.6} J Constituent concentration exceeds Virginia Surface Water Aquatic Life Freshwater Chronic Standard.

					_						T		Army Ammunition Plant,													
Sample Name: Sample Depth (ft):		Adjusted Soil RBC	Adjusted Soil RBC	Facility-Wide Background		SS-04a 0 - 0.5	SS-05 0 - 0.5	WBGBC1A 0 - 2	WBGBC1B 5 - 7	WBGSB1A 0 - 2	WBGSB1B 2 - 4	WBGSB2A 0 - 2	WBGSB2B 6 - 8	WBGSB2C 9 - 11	WBGSB3A 0 - 1	WBGSB4A 0 - 1.5	WBGSB5A 0 - 2	WBGDW1 0 - 2	WBGDW2 0 - 2	WBGDW3 0 - 2	WBGDW4 0 - 2	WBGDW5 0 - 2	WBGDW6 0 - 2	WBGDW7	WBGDW15	WBGDW16
Date Collected:	Units	(Residential)	(Industrial)	Point	06/03/97	06/03/97	06/03/97	08/18/99	08/18/99	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	06/21/99	06/28/99	07/13/99
Dioxin/Furan 1,2,3,4,6,7,8-HpCDD	mg/kg				0.000021925	0.00001374	0.00001422	NA	NA	NA	NA	NA	l NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				0.000002541 B	0.000001492 B	0.000002285 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDF	mg/kg				ND	ND	0.000000756 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF	mg/kg mg/kg				0.000001062 J NA	0.000000503 NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		0.000000567 J	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HxCDF 2.3.4,7.8-PeCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	mg/kg	0.0000043 {C	0.000019 {C}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
2,3,7,8-TCDF OCDD	mg/kg				NA 0.000835467	NA 0.000514342	NA 0.00067782	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
OCDF	mg/kg mg/kg				0.000033407 0.00000397 B	0.000014342 0.000002011 B	0.00007782 0.000003306 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDDs	mg/kg				0.000018718	0.00001187	0.000013721	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDFs Total HxCDDs	mg/kg mg/kg				0.000004247 I 0.000004853 J	0.000002527 I 0.000003464	0.000004698 I 0.000003753	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HxCDFs	mg/kg				0.000007154 J	0.000004695 I	0.000015869 I	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA
Total PeCDDs Total PeCDFs	mg/kg mg/kg				NA 0.000001176	NA 0.000002388 I	NA 0.000003891 I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total TCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TCDFs Explosives	mg/kg				ND	0.000001169 I	0.000001248 I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pentaerythritol Tetranitrate	mg/kg				NA	NA	NA	NA	NA	<1.2	<1.2	<1.2	<1.3 [<1.2]	<1.3	<1.2	<1.2	<1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides 2.4.5-TP	mg/kg	63 {N}	820 {N}		NA	NA NA	NA NA	NA	NA	NA	NA	l NA	I NA	NA I	NA	NA	NA	NA NA	NA	NA	NA.	NA NA	NA	NA	NA	NA
2,4-D	mg/kg	78 {N}	1,000 {N}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Dalapon MCPP	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Organochlorine Pesticides	mg/kg	7.8 {N}	100 {N}		NA NA	NA	INA	INA	NA	INA	NA	INA	NA	NA	INA	NA	NA	NA	INA	NA	INA	INA	INA	NA	NA	INA
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin PAHs	mg/kg	0.04 {C}	0.18 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene	mg/kg mg/kg	470 {N} 230 {N}	6,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg mg/kg	0.022 {C}	3.9 {C}		NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Benzo(g,h,i)perylene	mg/kg		 39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	2.2 {C} 22 {C}	390 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene Fluorene	mg/kg mg/kg	310 {N} 310 {N}	4,100 {N} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 (C)	3.9 {C}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene Phenanthrene	mg/kg mg/kg	160 {N} 230 {N}	2,000 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		0.084	0.047	ND	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volatile Organics			. ,			•	•						•										1			
Acetone Carbon Disulfide	mg/kg mg/kg	7,000 {N} 780 {N}	92,000 {N} 10,000 {N}		ND 0.00080 J	ND ND	0.0040 B ND	NA NA	NA NA	<0.0060 <0.0060	<0.0060 <0.0060	<0.0060 <0.0060	<0.0070 J [<0.0070] <0.0070 J [<0.0070]		<0.0060 <0.0060	<0.0060 <0.0060	<0.0060 <0.0060	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride p-Isopropyltoluene	mg/kg mg/kg	85 (C)	380 {C}		0.0030 B NA	0.0030 B NA	0.0020 B NA	NA NA	NA NA	<0.0010 <0.0010	<0.0010 <0.0010	0.0030 <0.0010	<0.0010 J [<0.0010] <0.0010 J [<0.0010]	<0.0010 J <0.0010 J	<0.0010 <0.0010 J	0.0030 <0.0010 J	<0.0010 <0.0010	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	mg/kg		8,200 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	<0.0010	<0.0010	<0.0010	<0.0020 J [<0.0020]		<0.00103	<0.0010	<0.0020	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
Semivolatile Organics	ma/ka	21 (NI)	410 {N}		NA NA	l NA	l NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	<0.37	<0.38	<0.40	NA.	l NA	NA	l NA	NA NA	NA NA	NA I	NA	NA
2-Methylnaphthalene Acenaphthene	mg/kg mg/kg		6,100 {N}		NA NA	NA NA	NA NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	<0.37	<0.38	<0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA NA	NA NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	<0.37	0.040 J	<0.40	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 <0.38 J	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	0.16 J 0.40 J	0.15 J 0.33 J	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	<0.36	<0.36	<0.38 J	<0.39	<0.38	<0.46 [<0.46]	<0.48	0.62 J	0.48 J	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	2.2 {C}	39 (C)		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 J <0.38 J	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	0.17 J 0.51 J	0.13 J 0.40 J	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.10 J	0.090 J	0.070 J	0.040	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	0.040 J	<0.38 J	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate Carbazole	mg/kg mg/kg	1,600 {N} 32 {C}	20,000 {N} 140 {C}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 <0.38	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	<0.37 <0.37	<0.38 J 0.040 J	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 (C)	390 (C)		NA	NA	NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	0.24 J	0.22 J	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene Dibenzofuran	mg/kg mg/kg	0.022 {C} 7.8 {N}	0.39 {C} 100 {N}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 J <0.38	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	R <0.37	<0.38	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	mg/kg	780 (N)	10,000 {N}		0.040 J	ND	ND	<0.36	<0.36	<0.38	<0.39	<0.38	0.080 J [<0.46]	<0.48	<0.37	<0.38	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Octylphthalate Fluoranthene	mg/kg mg/kg	310 {N}	 4,100 {N}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 J <0.38	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	0.33 J	0.33 J	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	mg/kg	310 (N)	4,100 (N)		NA	NA	NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	<0.37	<0.38	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg mg/kg	0.22 {C} 160 {N}	3.9 {C} 2,000 {N}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 J <0.38	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	0.15 J <0.37	0.13 J <0.38	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-Nitrosodiphenylamine	mg/kg	130 {C}	580 (C)		NA	NA	NA	<0.36	<0.36	<0.38	<0.39	<0.38	<0.46 [<0.46]	<0.48	0.060 J	<0.38	<0.40	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene Pyrene	mg/kg mg/kg		3,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	<0.36 <0.36	<0.36 <0.36	<0.38 <0.38	<0.39 <0.39	<0.38 <0.38	<0.46 [<0.46] <0.46 [<0.46]	<0.48 <0.48	0.12 J 0.40	0.19 J 0.43 J	<0.40 <0.40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
See footnotes on last page.	mg/kg	200 (IN)	0, 100 (IV)		1971	INA	INA	٠٠.٥٥	~0.00	10.00	۳۵.۵۶	~0.00	-0.70 [>0.40]	·U. T U	J.7U	J. T J J	~∪.7∪	1 1971	11/7	ING	11/7	1474	I INC	13/7	INA	I W/A

See footnotes on last page.

G:\Pricts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables 3-16 through 3-18.WBG Tables-reformatted

	1	Adimeted	Adimetad	Facility-Wide																						T
Sample Name		Adjusted	Adjusted		SS-04	SS-04a	SS-05	WBGBC1A	WBGBC1B	WBGSB1A	WBGSB1B	WBGSB2A	WBGSB2B	WBGSB2C	WBGSB3A	WBGSB4A	WBGSB5A	WBGDW1	WBGDW2	WBGDW3	WBGDW4	WBGDW5	WBGDW6	WBGDW7	WBGDW15	WBGDW16
Sample Depth (ft)		Soil RBC	Soil RBC	Background Point	0 - 0.5	0 - 0.5	0 - 0.5	0 - 2	5 - 7	0 - 2	2 - 4	0 - 2	6 - 8	9 - 11	0 - 1	0 - 1.5	0 - 2	0 - 2	0 - 2	0 - 2	0 - 2	0 - 2	0 - 2	00/04/00	00/00/00	07/40/00
Date Collected	: Units	(Residential) (Industrial)	Polit	06/03/97	06/03/97	06/03/97	08/18/99	08/18/99	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	08/05/98	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	06/21/99	06/28/99	07/13/99
Inorganics		T 000 (1)	100 000 00	10.011																						
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	18,700	20,300	13,600	27,900	46,500	12,500	14,200	10,100	12,700 [23,500]	27,000	14,500	13,200	15,300	NA								
Antimony	mg/kg	3.13 {N}	40.88 {N}		NA	NA	NA	1.70 B	2.20 B	<0.560	<0.570	<0.560	<0.690 [<0.680]	<0.710	5.30 K	<0.580	<0.580	NA								
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	9.70	6.10	7.20	11.2 K	11.4 K	9.40 K	7.80 K	17.0 K	3.70 K [5.10 K]	5.30 K	35.8	37.9	9.80 K	NA								
Barium	mg/kg	1,564 {N}	20,440 {N}	209 (N)	22.4 J	23.8 J	35.6 J	33.1	105	210 K	26.9 K	457 K	22.3 B [43.1 K]	45.9 K	610 K	584 K	49.6 K	NA								
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.700	0.600	0.600	0.830 B	2.50	0.320 J	0.700	0.480 J	2.70 [3.00]	1.40	0.290 J	0.420 J	0.540 J	NA								
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	NA	NA	NA	<0.120	0.310 J	0.450 J	<0.110	1.90	<0.140 [<0.140]	0.300 J	2.70	0.400 J	<0.120	NA								
Calcium	mg/kg				980	702	1,080	3,730	4,630	33,900	2,570 B	97,300	4,710 B [7,060 B]	37,300	47,600	10,600 B	9,430 B	NA								
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	39.1	37.1	34.4	39.4	65.3	195	41.5	233	28.0 [47.4]	64.1	249	34.9	38.2	NA								
Cobalt	mg/kg			72.3	12.3	13.6	5.10	17.0	17.3	7.20 K	7.80 K	8.70 K	7.90 K [12.1 K]	16.4 K	10.9 K	8.30 K	8.60 K	NA								
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	57.6	25.6	26.4	28.1	43.0	556	18.0 B	203	14.9 B [18.2 B]	13.9 B	1,340	194	53.4	NA								
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	47,800	39,100	35,700	46,000	43,700	34,500	27,300	26,300	19,900 [30,800]	28,700	42,900	28,000	39,300	NA								
Lead	mg/kg	400	750	26.8	42.9	27.5	310	33.2	18.6	2,070	179	2,450	9.50 [18.7]	13.3	3,990	2,480	44.5	NA								
Magnesium	mg/kg				763	657	524	3,990	31,300	18,900	2,490 B	21,000	17,900 [41,100]	58,900	23,200	4,910	3,560	NA								
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	255	347	188	268	256	177	44.9	312	255 [222]	247	548	161	139	NA								
Mercury	mg/kg	2.35	30.66	0.13	NA	NA	NA	0.190	<0.120	<0.110	<0.120	<0.120	<0.140 [<0.140]	<0.140	<0.110	<0.120	<0.120	NA								
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	15.0	18.9	10.2	18.4	36.0	11.6 K	12.0 K	18.6 K	17.7 K [29.0 K]	20.0 K	28.4 K	17.7 K	11.7 K	NA								
Potassium	mg/kg				684	674	458	1,240	5,960	1,100 K	1,040 K	1,950 K	2,860 K [7,170 K]	10,600 K	1,620 K	836 K	1,030 K	NA								
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	< 0.590	< 0.590	< 0.560	< 0.570	< 0.560	<0.690 [<0.680]	<0.710	< 0.560	< 0.580	< 0.580	NA								
Silver	mg/kg	39.1 {N}	511 {N}		NA	NA	NA	<0.120	<0.120	<0.230 L	<0.230 L	0.240 B	<0.280 L [<0.270 L]	<0.280 L	0.500 B	<0.230 L	<0.230 L	NA								
Sodium	mg/kg				NA	NA	NA	116 B	153 B	111 B	49.1 B	217 B	65.8 B [66.8 B]	120 B	384 B	123 B	78.7 B	NA								
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	NA	NA	NA	<0.820 J	<0.830 J	<0.230 L	<0.230 L	0.410 B	<0.280 L [<0.270 L]	0.670 B	0.860 B	<0.230 L	<0.230 L	NA								
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	73.7	67.6	66.3	74.9	75.8	45.9 K	56.2 K	33.5 K	38.3 K [63.4 K]	67.7 K	53.9 K	54.0 K	70.3 K	NA								
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	162	85.7	205	414	59.5	1,100	57.6 B	2,520	47.4 B [75.5 B]	57.3 B	3,250	1,280	126 B	NA								
Inorganics - TCLP																										
Arsenic	μg/L	5,000*			NA	NA	NA	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	7.7								
Barium	μg/L	100,000*			NA	NA	NA	NA	NA	48.5	905	42.1	120	24.2	24	116	628	126								
Cadmium	μg/L	1,000*			NA	NA	NA	NA	NA	<1	3.9	<1	<1	<1	1.3	<1	1.3	<1								
Chromium	μg/L	5,000*			NA	NA	NA	NA	NA	<1	3.2	<1	<1	<1	<1	337	103	5.6								
Lead	μg/L	5,000*			NA	NA	NA	NA	NA	<2	11.4	2.2	<2	5.3	<2	<2	272	9.1								
Mercury	μg/L	200*			NA	NA	NA	NA	NA	<0.2	<0.2	0.75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2								
Selenium	μg/L	1,000*			NA	NA	NA	NA	NA	<4	5	<4	4.5	<4	<4	<4	<4	<4								
Silver	μg/L	5,000*			NA	NA	NA	NA	NA	<1	<1	1.1	<1	<1	<1	<1	<1	<1								
Miscellaneous																										
Percent Solids	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
pH	pH Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Total Organic Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								

See footnotes on last page

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

Sample Name:		Adjusted	Adjusted	Facility-Wide	WBGDW17	WBGDW18	WBGDW19	WBGDW20	WBGDW21	WBGDW22	WBGDW23	WBGDW23A	WBGDW24	WBGDW25	WBGDW26	WBGSB6A	WBGSB7A	WBGSB8A	WBGSB9A	WBGSB10A	WBGSB11A	WBGTP1A	WBGTP1B	WBGTP1B2	WBGTP1S	WBGTP1SB	s
Sample Depth (ft): Date Collected:	Units	Soil RBC (Residential)	Soil RBC (Industrial)	Background Point	07/14/99	07/15/99	07/15/99	07/15/99	07/15/99	07/22/99	07/22/99	07/29/99	07/23/99	07/23/99	10/06/99	0 - 2 05/26/99	0 - 2 05/26/99	0 - 2 05/26/99	0 - 2 05/26/99	0 - 2 05/26/99	0 - 2 05/26/99	2.5 - 3 06/22/99	3 - 3.5 06/23/99	3.5 - 4 07/23/99	1 - 1.5 06/22/99	1 - 1.5 06/23/99	Samı Da
Dioxin/Furan					b.I.A.					L	NIA.	. NA	NIA	NIA				NA			1 114					NIA.	Dioxin/Furan
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,4,6,7,8-H 1,2,3,4,6,7,8-H											
1,2,3,4,7,8,9-HpCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,4,7,8,9-H											
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,4,7,8-Hx(1,2,3,4,7,8-Hx(
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	1,2,3,6,7,8-Hx(
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	mg/kg mg/kg	0.0001 {C}	0.00046 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,6,7,8-Hx(1,2,3,7,8,9-Hx(
1,2,3,7,8,9-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,2,3,7,8,9-Hx(
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,7,8-PeCI											
2,3,4,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,3,4,6,7,8-Hx											
2,3,4,7,8-PeCDF 2,3,7,8-TCDD	mg/kg mg/kg	0.0000043 {C}	 0.000019 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,3,4,7,8-PeCI 2,3,7,8-TCDD											
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,3,7,8-TCDF											
OCDD OCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	OCDD											
Total HpCDDs	mg/kg				NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total HpCDDs											
Total HpCDFs Total HxCDDs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Total HpCDFs Total HxCDDs											
Total HxCDFs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	Total HxCDFs
Total PeCDDs	mg/kg				NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	Total PeCDDs
Total PeCDFs Total TCDDs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Total PeCDFs Total TCDDs											
Total TCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total TCDFs											
Explosives Pentaerythritol Tetranitrate	mg/kg				NA	NA	NA	l NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA I	NA	NA	l NA	NA	NA	l NA	NA	NA	NA	Explosives Pentaerythritol
Herbicides																				l.							Herbicides
2,4,5-TP 2,4-D	mg/kg mg/kg	63 {N} 78 {N}	820 {N} 1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,4,5-TP 2,4-D											
Dalapon	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dalapon											
MCPP Organochlorine Pesticides	mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MCPP Organochloria											
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,4'-DDD											
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dieldrin											
PAHs 2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	PAHs 2-Methylnaphtl											
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	<0.03 J	<0.03 [<0.03 J]	0.32 J	<0.03 J	<0.03 J	NA	NA	NA	NA	NA	Acenaphthene											
Acenaphthylene Anthracene	mg/kg mg/kg	230 {N} 2.300 {N}	3,100 {N} 31,000 {N}		NA NA	<0.03 <0.02	<0.03 [<0.03] <0.02 [<0.02]	<0.03 <0.02	<0.03 <0.02	<0.02 <0.01	NA NA	NA NA	NA NA	NA NA	NA NA	Acenaphthylen Anthracene											
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA	<0.02	<0.02 [<0.02]	<0.02	<0.02	<0.02	NA	NA	NA	NA	NA	Benzo(a)anthra											
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	0.022 {C} 0.22 {C}	0.39 {C} 3.9 {C}		NA NA	<0.02 <0.03	<0.02 [<0.02] <0.03 [<0.03]	<0.02 0.02 J	<0.02 <0.03	<0.02 <0.02	NA NA	NA NA	NA NA	NA NA	NA NA	Benzo(a)pyren Benzo(b)fluora											
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	< 0.03	<0.03 [<0.03]	<0.03	<0.03	<0.02	NA	NA	NA	NA	NA	Benzo(g,h,i)pe
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	2.2 {C} 22 {C}	39 {C} 390 {C}		NA NA	<0.02 <0.02	<0.03 [<0.03] <0.02 [0.02 J]	<0.03 <0.02	<0.02 <0.02	<0.02 <0.02	NA NA	NA NA	NA NA	NA NA	NA NA	Benzo(k)fluora Chrysene											
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	<0.02	<0.03 [<0.03]	<0.02	<0.02	<0.02	NA	NA	NA	NA	NA	Dibenzo(a,h)ar
Fluoranthene Fluorene	mg/kg mg/kg	310 {N} 310 {N}	4,100 {N} 4,100 {N}		NA NA	<0.02 <0.03	<0.02 [<0.02] <0.03 [<0.03]	<0.02 <0.03	<0.02 <0.03	<0.02 <0.02	NA NA	NA NA	NA NA	NA NA	NA NA	Fluoranthene Fluorene											
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 (C)		NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	<0.03	<0.01 [<0.02]	<0.03	<0.03	<0.02	NA	NA NA	NA	NA NA	NA	Indeno(1,2,3-c
Naphthalene Phenanthrene	mg/kg mg/kg	160 {N} 230 {N}	2,000 {N} 3,100 {N}		NA NA	<0.04 <0.02	<0.04 [<0.04] <0.02 [<0.02]	<0.04 <0.02	<0.03 <0.02	<0.03 <0.02	NA NA	NA NA	NA NA	NA NA	NA NA	Naphthalene Phenanthrene											
Pyrene	mg/kg	230 (N)	3,100 {N}		NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	<0.02	<0.02 [<0.02]	0.04 J	<0.02	<0.02	NA	NA	NA	NA NA	NA	Pyrene
PCBs Aroclor-1254	mallea	0.16 (C)	1.4(0)		NIA	NA	NA	I NA	I NA	NΙΔ	NIA	NIA .	NA	NIA	N/A	NA	NA	NA	I NA	I NA	I NA	T NA	I NA	NΑ	NIA	NA	PCBs
Volatile Organics	mg/kg	0.16 {C}	1.4 {C}		NA	INA	IVA	NA	NA	NA	NA	NA	NA	NA	INA	Aroclor-1254 Volatile Organ											
Acetone Contrac Disselfida	mg/kg	,	92,000 {N}		NA NA	NA	NA NA	NA NA	<0.0062 J	<0.0064 J [<0.0065 J]	_	0.070 J	<0.0057 J	NA NA	NA NA	NA NA	NA NA	NA	Acetone								
Carbon Disulfide d-Limonene	mg/kg mg/kg	780 {N}	10,000 {N}		NA NA	<0.0062 NA	<0.0064 [<0.0065] NA	<0.0063 NA	<0.0060 NA	<0.0057 NA	NA NA	NA NA	NA NA	NA NA	NA NA	Carbon Disulfic d-Limonene											
Methylene Chloride	mg/kg	85 {C}	380 (C)		NA	<0.0012	<0.0013 [<0.0013]	<0.0013	<0.0012	<0.0011	NA	NA	NA	NA	NA	Methylene Chl											
p-Isopropyltoluene Toluene	mg/kg mg/kg	630 {N}	8,200 {N}		NA NA	<0.0011 <0.0015	0.0048 [<0.0012] <0.0016 [<0.0016]	<0.0011 <0.0016	<0.0011 <0.0015	<0.0010 <0.0014	NA NA	NA NA	NA NA	NA NA	NA NA	p-Isopropyltolu Toluene											
Semivolatile Organics															•							•					Semivolatile (
2-Methylnaphthalene Acenaphthene	mg/kg mg/kg	31 {N} 470 {N}	410 {N} 6,100 {N}		NA NA	<0.37 NA	<0.39 [<0.39] NA	<0.38 NA	<0.36 NA	<0.34 NA	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	2-Methylnaphtl Acenaphthene											
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	<0.41	<0.41	NA	<0.42	<0.38	Anthracene											
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	Benzo(a)anthra Benzo(a)pyren											
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	<0.41	<0.41	NA	<0.42	<0.38	Benzo(b)fluora											
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	2.2 {C}	 39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	Benzo(g,h,i)pe Benzo(k)fluora											
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		NA	<0.37	<0.39 [<0.39]	<0.38	< 0.36	<0.34	<0.41	<0.41	NA	<0.42	<0.38	bis(2-Ethylhex											
Butylbenzylphthalate Carbazole	mg/kg mg/kg	1,600 {N} 32 {C}	20,000 {N} 140 {C}		NA NA	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.38 <0.38	<0.36 <0.36	<0.34 <0.34	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	Butylbenzylpht Carbazole											
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	<0.41	<0.41	NA	<0.42	<0.38	Chrysene											
Dibenzo(a,h)anthracene Dibenzofuran	mg/kg mg/kg	0.022 {C} 7.8 {N}	0.39 {C} 100 {N}		NA NA	NA <0.37	NA <0.39 [<0.39]	NA <0.38	NA <0.36	NA <0.34	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	Dibenzo(a,h)ar Dibenzofuran											
Di-n-Butylphthalate	mg/kg mg/kg	7.6 (N) 780 (N)	100 (N) 10,000 (N)		NA	0.050 B	<0.39 [0.050 B]	0.070 B	0.070 B	0.13 B	0.36 B	<0.41	NA	<0.42	0.21 B	Di-n-Butylphtha											
Di-n-Octylphthalate	mg/kg	210 (NI)	4,100 {N}		NA NA	<0.37 NA	<0.39 [<0.39]	<0.38 NA	<0.36 NA	<0.34 NA	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38	Di-n-Octylphth											
Fluoranthene Fluorene	mg/kg mg/kg	310 {N} 310 {N}	4,100 {N} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.41	<0.41	NA NA	<0.42	<0.38 <0.38	Fluoranthene Fluorene											
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 (C)	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.41	<0.41	NA NA	<0.42	<0.38	Indeno(1,2,3-c											
Naphthalene N-Nitrosodiphenylamine	mg/kg mg/kg	160 {N} 130 {C}	2,000 {N} 580 {C}		NA NA	NA <0.37	NA <0.39 [<0.39]	NA <0.38	NA <0.36	NA <0.34	<0.41 <0.41	<0.41 <0.41	NA NA	<0.42 <0.42	<0.38 <0.38	Naphthalene N-Nitrosodiphe											
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	<0.41	<0.41	NA	<0.42	<0.38	Phenanthrene											
Pyrene See footnotes on last page.	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	<0.41	<0.41	NA	<0.42	<0.38	Pyrene See footnotes											

Page 3 of 14 G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

Sample N	lame:		Adjusted	Adjusted	Facility-Wide	WBGDW17	WBGDW18	WBGDW19	WBGDW20	WBGDW21	WBGDW22	WBGDW23	WBGDW23A	WBGDW24	WBGDW25	WBGDW26	WBGSB6A	WBGSB7A	WBGSB8A	WBGSB9A	WBGSB10A	WBGSB11A	WBGTP1A	WBGTP1B	WBGTP1B2	WBGTP1S	WBGTP1SB	S
Sample Dept			Soil RBC	Soil RBC	Background							112021120					0-2	0 - 2	0 - 2	0 - 2	0 - 2	0-2	2.5 - 3	3 - 3.5	3.5 - 4	1 - 1.5	1 - 1.5	Samı
Date Colle		its (R	Residential)	(Industrial)	Point	07/14/99	07/15/99	07/15/99	07/15/99	07/15/99	07/22/99	07/22/99	07/29/99	07/23/99	07/23/99	10/06/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	05/26/99	06/22/99	06/23/99	07/23/99	06/22/99	06/23/99	Da
Inorganics				,																								Inorganics
Aluminum	mg/	/kg	7,800 {N}	100,000 {N}	40,041	NA	NA	NA	NA	NA	NA	14,700	15,800 [18,800]	15,500	14,800	8,570	11,700	9,950	10,300	10,000	8,270	Aluminum						
Antimony	mg/	/kg	3.13 {N}	40.88 {N}		NA	NA	NA	NA	NA	NA	<0.610	1.90 B [<0.650]	<0.620	<0.580	<0.560	<0.620	< 0.630	1.30 B	<0.630	< 0.570	Antimony						
Arsenic	mg/	/kg	0.43 {C}	1.91 {C}	15.8 {C}	NA	NA	NA	NA	NA	NA	10.0	17.1 [15.8]	14.9	8.50	6.00 B	6.50 B	6.00 B	5.40 B	4.20 B	4.40 B	Arsenic						
Barium	mg/	/kg	1,564 {N}	20,440 {N}	209 (N)	NA	NA	NA	NA	NA	NA	20.6 L	35.9 L [19.4 L]	72.2 L	30.0 L	22.9 L	24.4	38.6	56.0	21.5 J	25.4	Barium						
Beryllium	mg/	/kg	15.6 {N}	204.4 {N}	1.02 {N}	NA	NA	NA	NA	NA	NA	0.520 K	0.650 K [0.490 K]	0.780 K	0.570 K	0.230 K	0.770 B	0.850 B	0.910 B	0.360 B	0.290 B	Beryllium						
Cadmium	mg/	/kg	3.9 {N}	51.1 {N}	0.69 {N}	NA	NA	NA	NA	NA	NA	0.300	0.740 [0.790]	0.540	0.330	<0.110	<0.120	<0.130	<0.120	<0.130	<0.110	Cadmium						
Calcium	mg/	/kg				NA	NA	NA	NA	NA	NA	856	1,300 [1,050]	1,780	1,630	660	1,420	1,840	7,020	990	912	Calcium						
Chromium	mg/	/kg	23.5 {N}	306.6 {N}	65.3 {N}	NA	NA	NA	NA	NA	NA	28.1	46.6 [49.7]	45.7	30.6	22.2	38.6 K	47.9 K	69.6	25.0 K	22.0 K	Chromium						
Cobalt	mg/	/kg		-	72.3	NA	NA	NA	NA	NA	NA	8.20	7.20 [4.80]	11.9	6.00	5.80	11.8 K	7.80	7.10 K	8.50	6.20	Cobalt						
Copper	mg/	/kg	312.9 {N}	4,088 {N}	53.5 (N)	NA	NA	NA	NA	NA	NA	21.6	40.0 K [29.0 K]	33.8 K	21.1	10.4	23.5	22.5	26.1 K	12.2	11.8	Copper						
Iron	mg/	/kg	2,346 {N}	30,660 {N}	50,962 {N}	NA	NA	NA	NA	NA	NA	31,800	39,300 [54,000]	39,100	35,000	20,400	36,400	30,200	30,100	25,000	21,100	Iron						
Lead	mg/	/kg	400	750	26.8	NA	NA	NA	NA	NA	NA	15.1 J	79.4 J [17.7 J]	43.6 J	11.6	11.6	34.0	231	808	14.8	17.9	Lead						
Magnesium	mg/	/kg				NA	NA	NA	NA	NA	NA	416	688 [735]	1,100	601	319	836	2,340	4,020	462 J	458 J	Magnesium						
Manganese	mg/	/kg	156.4 {N}	2,044 {N}	2,543 {N}	NA	NA	NA	NA	NA	NA	87.0 K	82.8 K [60.2 K]	122 K	71.3 K	131 K	123 K	109 K	144	117 K	123 K	Manganese						
Mercury	mg/	/kg	2.35	30.66	0.13	NA	NA	NA	NA	NA	NA	<0.120	<0.130 [<0.120]	0.210 K	0.210 K	<0.110	<0.120	<0.130	<0.120	0.210	<0.110	Mercury						
Nickel	mg/	J	156.4 {N}	2,044 {N}	62.8 {N}	NA	NA	NA	NA	NA	NA	11.5 K	15.1 K [11.3 K]	16.2 K	10.7 K	5.30	11.1 J	10.3 J	10.0 K	4.40 J	4.20 J	Nickel						
Potassium	mg/	9				NA	NA	NA	NA	NA	NA	545	704 [625]	684	583	444	766	1,010	1,020 J	438 J	335 J	Potassium						
Selenium	mg/		39.1 {N}	511 {N}		NA	NA	NA	NA	NA	NA	<0.490 L	<0.510 L [<0.520 L]	<0.500 L	<0.580 L	1.20	<0.500	0.610 K	<0.610 L	<0.500	<0.450	Selenium						
Silver		9	39.1 {N}	511 {N}		NA	NA	NA	NA	NA	NA	0.280 B	0.360 B [0.470 B]	0.410 B	0.280 B	0.130 B	<0.120	<0.130	0.240 B	<0.130	<0.110	Silver						
Sodium Thallium	mg/	,	O F 4 O (NI)	7.154 {N}	2.11 {N}	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	123 B <0.850	159 B [124 B]	148 B <0.870	112 B <0.810	119 B	194 B <0.870	61.6 B	23.7 B <0.850	122 B <0.880	45.2 B <0.790	Sodium
Vanadium	mg/	9	0.548 {N}	7.154 {N} 102.2 {N}	2.11 {N} 108 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	61.7 K	<0.890 [<0.910] 86.2 K [90.7 K]	₹0.870 82.3 K	63.8 K	<0.780 39.0 K	69.3 K	<0.880 52.3 K	57.4 K	47.7 K	₹0.790 35.7 K	Thallium Vanadium						
Zinc		J	2.346 (N)	30,660 {N}	202 {N}	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	30.9 K	381 K [118]	96.5 K	25.7 K	15.2 K	29.0 K	86.6 K	311 J	22.1 K	26.5 K	Zinc						
Inorganics - TCLP	IIIg/	/kg	2,340 (11)	30,000 (14)	202 (IN)	INA	INA	INA	INA	INA	INA	30.9 K	301 K [110]	90.5 K	25.7 K	15.2 K	29.0 K	00.0 K	3113	22.1 K	20.5 K	Inorganics - T						
_ · J	1	Л	5.000*			6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA I	NA	
Arsenic Barium	µg.		100.000*			485	346	272	497	847	221	553	326	588	423	108	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Arsenic Barium
Cadmium	ug.		1.000*			<1	5.6	2.9	2.3	8.2	2.4	3.4	1.6	2.1	4.5	<1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Cadmium
Chromium	ug		5.000*			113	13	<1	144	19.5	<1	6.9	66	<1	17.2	<1	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	Chromium
Lead	ug.		5.000*			88.9	468	284	424	558	157	3,530	721	172	221	8.6	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	Lead
Mercury	na		200*			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury
Selenium	μq	/L	1,000*			<5	12.9	10.6	11.1	10.2	<5	6.2	<5	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Selenium
Silver	μg		5,000*			1.3	1.2	<1	<1	<1	1	<1	<1	1	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Silver
Miscellaneous		•			•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		•		•			Miscellaneous
Percent Solids	%	Ď				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Percent Solids						
pН	pH U	Inits				NA	NA	NA	NA	NA	NA	NA	NA	6.6	NA	5.95	6.85	6.7	NA	6.9	6.8	рН						
Total Organic Carbon	ma/	/ka				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total Organic (

See footnotes on last page

See footnotes

lample Name ple Depth (ft) ate Collected	: : : Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	WBGTP2A 2.5 - 3 06/22/99	WBGTP2B 3 - 3.5 06/22/99	WBGTP2S 1 - 1.5 06/22/99	WBGTP3A 2.5 - 3 06/23/99	WBGTP3S 1 - 1.5 06/23/99	WBGTP4A 2.5 - 3 06/24/99	WBGTP4B 2 - 2.5 06/24/99	WBGTP4S 0.5 - 1 06/24/99	WBGTP5A 2.5 - 3 06/24/99	WBGTP5B 2.5 - 3 06/24/99	WBGTP6A 2.5 - 3 06/23/99	WBGTP7A 2.5 - 3 07/13/99	WBGTP7B 2.5 - 3 07/14/99	WBGTP7S 1 - 1.5 07/14/99	WBGTP8A 3 - 3.5 07/13/99	WBGTP8B 3 - 3.5 07/13/99	WBGTP9A 2.5 - 3 06/24/99	WBGTP9S 1 - 1.5 06/24/99	WBGTP10A 2.5 - 3 07/15/99	WBGTP10B 2.5 - 3 07/15/99	WBGTP10S 0.5 - 1 07/15/99	WBGTP11A 2.5 - 3 07/15/99	WBGTP11B 2.5 - 3 07/15/99	S Samı Da
IpCDD	mg/kg				NA	0.000243	NA	0.000133	NA	0.0000452	NA	NA	NA	Dioxin/Furan 1,2,3,4,6,7,8-H														
IpCDF IpCDF	mg/kg mg/kg				NA NA	0.00000042 <0.0000001	NA NA	0.0000256 0.00000151	NA NA	0.00000137 <0.0000002	NA NA	NA NA	NA NA	1,2,3,4,6,7,8-H 1,2,3,4,7,8,9-H														
CDD	mg/kg				NA NA	0.0000001	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	0.00000151	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.0000002	NA NA	NA NA	NA NA	1,2,3,4,7,8-Hx(
CDF CDD	mg/kg				NA NA	<0.00000006 0.000023	NA NA	0.00000181 0.00000389	NA NA	0.00000041 0.00000131	NA NA	NA NA	NA NA	1,2,3,4,7,8-Hx(1,2,3,6,7,8-Hx(
CDF	mg/kg mg/kg				NA NA	<0.000023	NA NA	0.00000389	NA NA	0.00000131	NA NA	NA NA	NA NA	1,2,3,6,7,8-Hx														
CDD CDF	mg/kg	0.0001 {C}	0.00046 {C}		NA NA	0.0000181 <0.00000007	NA NA	0.00000325 0.00000052	NA NA	0.0000017 <0.00000014	NA NA	NA NA	NA NA	1,2,3,7,8,9-Hx(
OD	mg/kg mg/kg				NA NA	0.00000007	NA NA	0.00000032	NA NA	0.00000014	NA NA	NA NA	NA NA	1,2,3,7,8,9-nXi														
OF CDF	mg/kg				NA NA	<0.00000005 <0.00000006	NA NA	0.00000144 0.00000342	NA NA	0.00000038 0.00000021	NA NA	NA NA	NA NA	1,2,3,7,8-PeCI 2,3,4,6,7,8-Hx(
OF COP	mg/kg mg/kg				NA NA	<0.00000005	NA NA	0.00000342	NA NA	0.00000021	NA NA	NA NA	NA NA	2,3,4,7,8-PeCI														
	mg/kg	0.0000043 {C	0.000019 (C)		NA	0.00000047	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	0.00000417	NA	NA NA	NA	NA	NA	NA	NA	0.00000024	NA	NA NA	NA	2,3,7,8-TCDD 2,3,7,8-TCDF
	mg/kg mg/kg				NA NA	<0.00000007 0.00721	NA NA	0.00000225 0.00648 J	NA NA	0.00000044 0.00543 J	NA NA	NA NA	NA NA	OCDD														
	mg/kg				NA	0.00000127	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	0.0000472	NA	0.00000186 B	NA	NA NA	NA	OCDF						
	mg/kg mg/kg				NA NA	0.000523 0.00000042	NA NA	0.000278 0.0000647	NA NA	0.000109 0.00000344	NA NA	NA NA	NA NA	Total HpCDDs Total HpCDFs														
	mg/kg				NA	0.0002	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	0.000045	NA	NA NA	NA NA	NA	NA	NA	NA	0.0000166	NA NA	NA NA	NA	Total HxCDDs
	mg/kg mg/kg				NA NA	0.00000087 0.0000355	NA NA	0.0000473 0.0000107	NA NA	0.00000125 B 0.00000318	NA NA	NA NA	NA NA	Total HxCDFs Total PeCDDs														
	mg/kg				NA NA	0.00000085	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	0.0000542	NA	NA NA	NA NA	NA	NA	NA	NA NA	0.00000165	NA NA	NA NA	NA	Total PeCDFs Total TCDDs
-	mg/kg mg/kg				NA NA	0.0000032 0.00000015	NA NA	0.00000978 0.0000562	NA NA	0.00000024 0.00000037	NA NA	NA NA	NA NA	Total TCDFs														
																			·									Explosives
Tetranitrate	mg/kg mg/kg	63 {N}	820 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Pentaerythritol Herbicides 2.4.5-TP
	mg/kg	78 (N)	1,000 {N}		NA	NA	NA	NA	NA	2,4-D																		
	mg/kg mg/kg	230 {N} 7.8 {N}	3,100 {N} 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	Dalapon MCPP																		
ne Pesticides		7.0 (.1)	100 (11)			1		1				10.							1					1				Organochlori
	mg/kg mg/kg	2.7 {C} 0.04 {C}	12 {C} 0.18 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	4,4'-DDD Dieldrin																		
-	Hig/kg	0.04 (0)	0.10 (0)		INA	INA	INA	INA	INA	PAHs																		
halene	mg/kg	31 {N}	410 (N)		NA	NA	NA	NA NA	NA	2-Methylnaphtl																		
ie .	mg/kg mg/kg	470 (N) 230 (N)	6,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	Acenaphthene Acenaphthyler																		
	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	Anthracene																		
acene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	Benzo(a)anthra Benzo(a)pyren																		
inthene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	Benzo(b)fluora																		
rylene Inthene	mg/kg mg/kg	2.2 {C}	39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	Benzo(g,h,i)pe Benzo(k)fluora																		
	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	Chrysene																		
nthracene	mg/kg mg/kg	0.022 {C} 310 {N}	0.39 {C} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	Dibenzo(a,h)aı Fluoranthene																		
-	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	Fluorene																		
d)pyrene	mg/kg mg/kg	0.22 {C} 160 {N}	3.9 {C} 2,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	Indeno(1,2,3-c Naphthalene																		
	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	Phenanthrene																		
	mg/kg	230 {N}	3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	Pyrene PCBs				
nics	mg/kg mg/kg		1.4 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Aroclor-1254 Volatile Organ Acetone				
de	mg/kg		10,000 {N}		NA	NA	NA	NA	NA	Carbon Disulfic																		
oride	mg/kg mg/kg	85 {C}	380 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	d-Limonene Methylene Chl																		
iene	mg/kg				NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA		p-Isopropyltolu
Organics	mg/kg	630 {N}	8,200 {N}		NA	NA	NA	NA	NA	Toluene Semivolatile (
halene	mg/kg		410 {N}		<0.41	<0.39	<0.40	<0.39	<0.40	<0.070	<0.060	<0.060		<0.060	<0.45	<0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	<0.070	<0.060	<0.34	<0.34	<0.36	<0.34		2-Methylnapht
	mg/kg mg/kg		6,100 {N} 31,000 {N}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	<0.39 <0.39	<0.40 <0.40	<0.0075 <0.020	<0.0073 <0.020	<0.0072 <0.020	<0.0071 <0.020	<0.0073 <0.020	<0.45 <0.45	<0.38 <0.38	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	<0.0073 <0.020	<0.0070 <0.020	<0.34 <0.34	<0.34 <0.34	<0.36 <0.36	<0.34 <0.34		Acenaphthene Anthracene
acene	mg/kg	0.22 {C}	3.9 {C}		<0.41	<0.39	<0.40	<0.39	<0.40	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.45	<0.38	<0.37	<0.39 [<0.39]	< 0.37	<0.36	<0.010	<0.010	<0.34	<0.34	<0.36	<0.34	< 0.35	Benzo(a)anthra
ie inthene	mg/kg mg/kg		0.39 {C} 3.9 {C}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	0.040 0.060 J	<0.40 <0.40	<0.010 <0.13	<0.010 <0.12	<0.010 <0.12	<0.010 <0.12	<0.010 <0.12	<0.45 <0.45	<0.38 <0.38	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	0.050 0.040	<0.010 <0.12	<0.34 <0.34	<0.34 <0.34	<0.36 <0.36	<0.34 <0.34		Benzo(a)pyren Benzo(b)fluora
rylene	mg/kg		3.9 (0)		0.39	<0.39	0.38 J	0.42 J	<0.40	<0.010 J	<0.010 J	<0.12	<0.0099 J	<0.010 J	<0.45	<0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	0.42 J	<0.0097 J	<0.34	<0.34	<0.36	<0.34		Benzo(g,h,i)pe
nthene	mg/kg		39 (C)		<0.41	<0.39	<0.40	0.080 J <0.39	<0.40	<0.12	<0.12 <0.070	<0.12	<0.12 <0.070	<0.12 <0.070	<0.45	<0.38	<0.37 <0.37	<0.39 [<0.39]	<0.37 <0.37	<0.36	0.050 J	<0.11	<0.34 <0.34	<0.34 <0.34	<0.36	<0.34 <0.34		Benzo(k)fluora
yl)phthalate halate	mg/kg mg/kg		200 {C} 20,000 {N}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	<0.39	<0.40 <0.40	<0.070 <0.010	<0.070	<0.070 <0.010	<0.070	<0.070	<0.45 <0.45	<0.38 <0.38	<0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37	<0.36 <0.36	<0.070 <0.010	0.050 <0.010	<0.34	<0.34	<0.36 <0.36	<0.34		bis(2-Ethylhex Butylbenzylpht
	mg/kg	32 {C}	140 (C)		<0.41	<0.39	<0.40	<0.39 0.040	<0.40	<0.060 J	<0.060 J <0.020	<0.050	<0.050 J	<0.060 J <0.020	<0.45 <0.45	<0.38 <0.38	<0.37 <0.37	<0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	<0.060 J	<0.050 J <0.020	<0.34 <0.34	<0.34	<0.36	<0.34 <0.34	< 0.35	Carbazole
nthracene	mg/kg mg/kg		390 {C} 0.39 {C}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	<0.39	<0.40 <0.40	<0.020 <0.060 J	<0.020 <0.060 J	<0.020 <0.060	<0.020 <0.050 J	<0.020 <0.060 J	<0.45	<0.38	<0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37	<0.36	0.080 J 0.20 J	<0.020 <0.050 J	<0.34	<0.34 <0.34	<0.36 <0.36	<0.34		Chrysene Dibenzo(a,h)aı
alate	mg/kg	7.8 {N}	100 {N}		<0.41	<0.39	<0.40 <0.40	<0.39	<0.40	<0.060	<0.060 <0.030	<0.060	<0.060	<0.060	<0.45	<0.38 <0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	<0.060	<0.060 0.090 B	<0.34	<0.34	<0.36 0.040 B	<0.34		Dibenzofuran
alate alate	mg/kg mg/kg	780 {N}	10,000 {N}		0.42 B <0.41	0.24 B <0.39	<0.40	<0.39 <0.39	0.20 B <0.40	<0.030 <0.020	<0.030	<0.030 <0.020	<0.030 <0.010	<0.030 <0.020	0.17 B <0.45	<0.38	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	<0.030 <0.020	<0.090 B	<0.34 <0.34	<0.34 <0.34	<0.36	<0.34 <0.34		Di-n-Butylphtha Di-n-Octylphtha
	mg/kg		4,100 (N)		<0.41	<0.39	<0.40	<0.39	<0.40	<0.010	<0.010	<0.010	<0.010	<0.010	<0.45	<0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	0.12	<0.010	<0.34	<0.34	<0.36	<0.34	< 0.35	Fluoranthene
d)pyrene	mg/kg mg/kg		4,100 {N} 3.9 {C}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	<0.39 <0.39	<0.40 <0.40	<0.0079 <0.030 J	<0.0077 <0.030 J	<0.0076 <0.030	<0.0075 <0.030 J	<0.0077 <0.030 J	<0.45 <0.45	<0.38 <0.38	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	<0.0077 <0.030 J	<0.0074 <0.030 J	<0.34 <0.34	<0.34 <0.34	<0.36 <0.36	<0.34 <0.34		Fluorene Indeno(1,2,3-c
	mg/kg	160 (N)	2,000 {N}		<0.41	<0.39	<0.40	<0.39	<0.40	<0.0075	<0.0073	<0.0072	<0.0071	<0.0073	<0.45	<0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	<0.0073	<0.0070	<0.34	<0.34	<0.36	<0.34	<0.35	Naphthalene
enylamine	mg/kg mg/kg	130 {C} 230 {N}	580 {C} 3,100 {N}		<0.41 <0.41	<0.39 <0.39	<0.40 <0.40	<0.39 <0.39	<0.40 <0.40	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.45 <0.45	<0.38 <0.38	<0.37 <0.37	<0.39 [<0.39] <0.39 [<0.39]	<0.37 <0.37	<0.36 <0.36	<0.010 0.050	<0.010 <0.010	<0.34 <0.34	<0.34 <0.34	<0.36 <0.36	<0.34 <0.34		N-Nitrosodiphe Phenanthrene
and the state of	mg/kg		3,100 {N}		<0.41	<0.39	<0.40	<0.39	<0.40	<0.010	<0.010	<0.010		<0.010	<0.45	<0.38	<0.37	<0.39 [<0.39]	<0.37	<0.36	<0.010	<0.010	<0.34	<0.34	<0.36	<0.34	<0.35	Pyrene
on last page.																												See footnotes

G:\Prijcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Table

ample Name:		Adjusted	Adjusted	Facility-Wide	WBGTP2A	WBGTP2B	WBGTP2S	WBGTP3A	WBGTP3S	WBGTP4A	WBGTP4B	WBGTP4S	WBGTP5A	WBGTP5B	WBGTP6A	WBGTP7A	WBGTP7B	WBGTP7S	WBGTP8A	WBGTP8B	WBGTP9A	WBGTP9S	WBGTP10A	WBGTP10B	WBGTP10S	WBGTP11A	WBGTP11E	s ا
ple Depth (ft):		Soil RBC	Soil RBC	Background	2.5 - 3	3 - 3.5	1 - 1.5	2.5 - 3	1 - 1.5	2.5 - 3	2 - 2.5	0.5 - 1	2.5 - 3	2.5 - 3	2.5 - 3	2.5 - 3	2.5 - 3	1 - 1.5	3 - 3.5	3 - 3.5	2.5 - 3	1 - 1.5	2.5 - 3	2.5 - 3	0.5 - 1	2.5 - 3	2.5 - 3	Samı
ate Collected:	Units	(Residential)	(Industrial)	Point	06/22/99	06/22/99	06/22/99	06/23/99	06/23/99	06/24/99	06/24/99	06/24/99	06/24/99	06/24/99	06/23/99	07/13/99	07/14/99	07/14/99	07/13/99	07/13/99	06/24/99	06/24/99	07/15/99	07/15/99	07/15/99	07/15/99	07/15/99	Da
																												Inorganics
	mg/kg	7,800 {N}	100,000 {N}	40,041	8,450	6,910	11,600	16,700	11,200	14,700	15,000	14,300	14,300	15,200	9,480	11,800	9,090	15,300 [14,900]	13,300	10,400	10,400	12,300	10,800	7,520	13,300	5,760	13,800	Aluminum
	mg/kg	3.13 {N}	40.88 {N}		<0.620	<0.580	<0.610	<0.590	<0.590	<0.630	<0.610	<0.610	<0.600	<0.620	<0.680	<0.630	<0.620	<0.640 [<0.650]	<0.620	<0.600	<0.610	<0.590	<0.570	<0.570	<0.610	<0.550	<0.580	Antimony
	mg/kg	0.43 {C}	1.91 (C)	15.8 {C}	3.80 B	1.70 B	7.30	9.80	5.40 B	9.70 K	9.20 K	9.40 K	7.20 B	8.30 K	3.70 B	4.50 B	2.80 B	7.80 B [7.10 B]	4.30 B	3.40 B	9.70 K	9.50 K	7.30 B	2.60 B	13.0	2.70 B	8.20	Arsenic
	mg/kg	1,564 {N}	20,440 {N}	209 (N)	17.0 J	13.7 J	52.5	51.8	22.9 J	25.7	26.8	15.2	24.4	29.5	18.9 J	24.3 J	22.5 J	14.0 J [14.5 J]	22.4 J	21.6 J	184	28.9	33.2	14.7 J	15.3 J	20.0 J	95.9	Barium
	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	0.490 B	0.240 B	0.670 B	1.20 B	0.520 B	0.440 B	0.290 B	0.300 B	0.160 B	0.260 B	<0.140	0.290 B	<0.120	0.230 B [0.320 B]	0.300 B	0.370 B	0.140 B	0.290 B	0.490 B	<0.110	0.550 B	0.120 B	0.710 B	Beryllium
	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.120	<0.120	0.200 K	0.280 K	<0.120	<0.130	<0.120	<0.120	<0.120	<0.120	<0.140	<0.130	<0.120	<0.130 [<0.130]	<0.120	<0.120	0.750	<0.120	<0.110	<0.110	<0.120	<0.110	0.220 K	Cadmium
	mg/kg				2,030	1,860	3,640	7,190	2,650	1,640	2,890	657	1,060	2,610	1,170	1,440	1,320	755 [748]	1,270	1,710	29,200	2,010	2,090	1,430	796	1,040	15,700	Calcium
	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	24.9 K	23.3 K	41.3 K	45.2 K	35.8 K	41.1	36.4	34.6	30.7	34.1	29.0 K	33.0	17.7 K	38.8 [34.5]	30.3	23.8	34.5	34.0	28.9	13.5 K	36.6	12.5 K	35.1	Chromium
	mg/kg		-	72.3	7.90	2.30 J	9.50 K	16.1 K	9.00	13.3	8.40	6.60	6.90	8.30	1.90 J	6.30 K	2.70 K	4.30 K [4.20 K]	3.20 K	6.20 K	6.10 J	8.80	7.70 K	1.40 K	10.0 K	2.30 K	6.80 K	Cobalt
	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	16.7	10.0	66.0 K	34.1 K	20.3	25.2 K	23.1 K	24.6 K	16.7 K	23.0 K	12.6	16.2 K	9.20	20.5 K [20.0 K]	15.2	19.1 K	122 K	45.1 K	20.3 K	8.20 K	26.1 K	7.10 K	63.6	Copper
	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	25,200	16,400	30,900	36,300	32,300	38,900	34,700	39,500	29,900	32,200	22,800	25,900	16,700	36,700 [34,900]	24,800	26,400	25,800	39,500	30,600	14,300	44,100	13,400	27,300	Iron
	mg/kg	400	750	26.8	25.4	54.8	173	137	19.5	39.6	36.8	19.9	14.1	32.6	9.30	81.4	17.4	11.5 [13.1]	9.40	15.6	265	33.3	26.0	8.90	23.2	7.90	89.7	Lead
	mg/kg				771	521 J	2,170	4,150	890	1,170	1,350	510	689	1,290	549 J	943	765	522 J [449 J]	1,050	1,120	4,640	511	856	475 J	381 J	408 J	6,330	Magnesium
	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	125 K	38.5 K	149 K	160 K	81.9 K	132	92.0	74.0	83.1	85.1	21.3 K	60.7	48.1	46.3 [44.2]	39.5	98.3	152	157	99.1	27.2 K	208	42.4 K	113	Manganese
	mg/kg	2.35	30.66	0.13	0.200	<0.110	0.130	<0.120	<0.120	<0.130	<0.120	<0.120	<0.120	<0.120	0.210	<0.130	<0.120	<0.130 [<0.120]	<0.120	<0.120	<0.120	<0.110	<0.120	<0.110	<0.120	<0.110	<0.110	Mercury
	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	7.10 J	2.60 J	10.8 J	15.9 J	11.7 J	12.2	9.90	10.2	8.00	10.3	2.50 J	5.10	2.80 J	6.10 [6.00]	5.90	5.80	10.1	10.0 B	7.50	1.30 J	11.3	1.80 J	11.6	Nickel
	mg/kg				678	382 J	741	1,750	418 J	835 J	1,090 J	573 J	1,120 J	1,110 J	1,250	807 J	1,070 J	1,300 J [1,190 J]	942 J	796 J	866 J	452 J	1,370 J	465 J	830 J	930 J	1,560 J	Potassium
	mg/kg	39.1 {N}	511 {N}		0.580 J	< 0.470	<0.490	<0.470	0.520 K	<0.500	<0.490	<0.490	<0.480	<0.490	0.720 K	<0.510	<0.620	<0.640 [<0.650]	<0.500	<0.480	<0.490	<0.470	<0.570	<0.570	<0.610	<0.550	<0.580	Selenium
	mg/kg	39.1 {N}	511 {N}		<0.120	<0.120	<0.120	<0.120	<0.120	<0.130	<0.120	<0.120	<0.120	<0.120	<0.140	0.140 B	<0.120	0.240 B [0.200 B]	0.220 B	0.120 B	0.140	<0.120	0.210 B	0.160 B	0.290 B	<0.110	0.180 B	Silver
	mg/kg				133 B	109 B	130 B	81.6 B	46.5 B	75.5 B	99.1 B	68.0 B	111 B	106 B	59.0 B	166 B	249 B	236 B [233 B]	198 B	169 B	116 B	58.0 B	183 B	158 B	148 B	150 B	201 B	Sodium
	mg/kg		7.154 {N}	2.11 {N}	<0.870	<0.810	<0.860	<0.830	1.20 J	<0.880	<0.860	<0.850	<0.830	<0.860	<0.950	<0.890	<0.870	<0.900 [<0.910]	<0.870	<0.840	<0.860	<0.820	<0.790	0.820 J	<0.850	<0.770	<0.810	Thallium
	mg/kg	7.8 {N}	102.2 {N}	108 {N}	49.4 K	44.7 K	55.7 K	57.4 K	50.1 K	69.7	63.7	71.0	56.3	60.5	42.3 K	51.8 K	36.5 K	91.1 K [82.9 K]	56.1 K	43.0 K	48.2	62.3	58.4 K	29.6 K	77.1 K	28.0 K	48.4 K	Vanadium
	mg/kg	2,346 {N}	30,660 {N}	202 {N}	25.1 K	18.5 K	214 K	309 K	178 K	40.7	57.0	132	26.2	58.4	25.3 K	63.6	17.2 K	25.6 K [26.7 K]	95.4	72.8	685 L	689	45.5	22.7 K	113	16.0 K	172	Zinc
CLP																												Inorganics - T
	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic													
	μg/L	100,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Barium													
	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Cadmium													
	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Chromium													
	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Lead													
	μg/L	200*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury													
	μg/L	1,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Selenium													
	μg/L	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Silver													
5	-																											Miscellaneous
	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Percent Solids													
	pH Units				6.75	6.95	6.85	6.65	6.75	6.45	6.15	7.15	6.25	6.3	6.25	6.3	6.6	6.65 [6.6]	6.35	6.3	7.05	7.25	7.5	7.75	7.45	7.55	7	pН
Carbon	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total Organic (

on last page

See footnotes

lample Name: ple Depth (ft): ate Collected:	Units	Adjusted Soil RBC (Residential)	Adjusted Soil RBC (Industrial)	Facility-Wide Background Point	WBGTP12A 2.5 - 3 07/15/99	WBGTP12S 0.5 - 1 07/15/99	WBGTP13A 1.5 - 2 07/22/99	WBGTP13B 1 - 1.5 07/22/99	WBGTP13S 1.5 - 2 07/22/99	WBGTP14A 2 - 2.5 07/22/99	WBGTP14B 1.5 - 2 07/22/99	WBGTP15A 1.5 - 2 07/15/99	WBGTP16A 0.5 - 1 07/22/99	WBGTP16A2 0.5 - 1 09/14/99	WBGTP17A 0.5 - 1 07/22/99	WBGTP18A 1 - 1.5 07/22/99	WBGTP18S 1 - 1.5 07/22/99	WBGTP19A 2.5 - 3 07/29/99	WBGTP19S 2.5 - 3 07/29/99	WBGSB12 0 - 4 08/18/99	WBGSB13 0 - 2 10/06/99	WBGSB13A 2 - 4 10/06/99	WBGSB14 0 - 2 10/06/99	WBGSB14A 2 - 4 10/06/99	WBGSB15 0 - 2 10/06/99	S Samı Da
IpCDD	mg/kg				0.000128	0.000145	NA	NA	0.0000548	NA	0.000039 B	NA	NA	NA	NA	NA	NA	NA	Dioxin/Furan 1,2,3,4,6,7,8-H							
IpCDF	mg/kg				0.0000226	0.0000132	NA	NA	0.00000044	NA	0.00000036 B	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,6,7,8-H							
IpCDF CDD	mg/kg mg/kg				0.00000105 0.00000236	0.00000098 0.00000209 J	NA NA	NA NA	<0.00000011 0.00000092	NA NA	0.00000011 B 0.00000051	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,4,7,8,9-H 1,2,3,4,7,8-Hx(
CDF	mg/kg				0.00000179	0.00000145 J	NA	NA	0.00000013	NA	0.00000013 B	NA	NA	NA	NA	NA	NA	NA	1,2,3,4,7,8-Hx(
CDD	mg/kg mg/kg				0.0000063 0.00000158	0.00000503 0.00000115	NA NA	NA NA	0.00000176 0.00000009	NA NA	0.00000096 0.00000011 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,6,7,8-Hx(
CDD	mg/kg	0.0001 {C}	0.00046 {C}		0.00000138	0.00000113	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	0.00000000	NA NA	0.0000001112	NA NA	NA	NA NA	NA NA	NA	NA	NA	1,2,3,7,8,9-Hx(
CDF	mg/kg				0.00000054	<0.0000005	NA	NA	<0.00000008	NA	<0.00000005	NA	NA	NA	NA	NA	NA	NA	1,2,3,7,8,9-Hx(
DF DF	mg/kg mg/kg				0.00000183 0.00000121	0.00000168 0.00000124	NA NA	NA NA	0.00000081 0.00000011	NA NA	0.0000005 B 0.00000009 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,2,3,7,8-PeCI 1,2,3,7,8-PeCI							
CDF	mg/kg				0.00000185	0.0000015	NA	NA	0.0000001	NA	0.00000011 B		NA	NA	NA	NA	NA	NA	2,3,4,6,7,8-Hx(
<u>DF</u>	mg/kg mg/kg	0.0000043 {C	 3 0.000019 {C}		0.00000185 0.00000054	0.00000172 0.00000053	NA NA	NA NA	0.00000014 0.00000032	NA NA	0.00000015 B 0.00000045 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,3,4,7,8-PeCI 2,3,7,8-TCDD							
	mg/kg				0.00000034	0.00000033	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00000032	NA NA	0.00000004318	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,3,7,8-TCDF
	mg/kg				0.0055 J	0.0083 J	NA	NA	0.0032	NA	0.00436 J	NA	NA	NA	NA	NA	NA	NA	OCDD							
	mg/kg mg/kg				0.0000254 0.00026	0.0000181 0.000296	NA NA	NA NA	0.00000125 0.000141	NA NA	0.00000054 B 0.0000755 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	OCDF Total HpCDDs							
	mg/kg				0.0000471	0.0000285	NA	NA	0.00000044	NA	0.00000047 B	NA	NA	NA	NA	NA	NA	NA	Total HpCDFs							
	mg/kg				0.000059	0.0000409	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	0.0000234	NA NA	0.0000045	NA NA	NA	NA NA	NA NA	NA	NA	NA	Total HxCDDs
-	mg/kg mg/kg				0.0000235 0.0000174	0.0000131 0.0000161	NA NA	NA NA	0.00000117 0.00000562	NA NA	0.00000072 B 0.00000158 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Total HxCDFs Total PeCDDs							
	mg/kg				0.0000214	0.0000183	NA	NA	0.00000068	NA	0.00000102	NA	NA	NA	NA	NA	NA	NA	Total PeCDFs							
	mg/kg mg/kg				0.00000669 0.0000258	0.0000049 0.0000291	NA NA	NA NA	0.0000011 0.00000053	NA NA	0.00000058 B 0.00000048	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Total TCDDs Total TCDFs							
	g.ng				0.0000200	0.0000201	101	1 17/1	1971	1971	177.	1773	1975	1773	19/1	0.0000000	17/1	5.5555555	1971	1973	101	17/1	17/3	17/1	1771	Explosives
Tetranitrate	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Pentaerythritol Herbicides									
	mg/kg mg/kg	63 {N} 78 {N}	820 {N} 1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2,4,5-TP 2,4-D									
	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dalapon									
ne Pesticides	mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MCPP Organochlorii									
le Pesticides	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,4'-DDD									
	mg/kg	0.04 {C}	0.18 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dieldrin									
halene	ma/ka	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PAHs 2-Methylnaphtl									
ilalelle	mg/kg mg/kg	470 (N)	6,100 (N)		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	Acenaphthene
ie	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Acenaphthylen									
acene	mg/kg mg/kg	2,300 {N} 0.22 {C}	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Anthracene Benzo(a)anthra									
ie	mg/kg	0.022 {C}	0.39 {C}		NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	Benzo(a)pyren
inthene	mg/kg	0.22 {C}	3.9 {C}		NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	Benzo(b)fluora
rylene	mg/kg mg/kg	2.2 {C}	39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Benzo(g,h,i)pe Benzo(k)fluora									
	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Chrysene									
nthracene	mg/kg	0.022 {C} 310 {N}	0.39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Dibenzo(a,h)aı Fluoranthene									
	mg/kg mg/kg	310 (N)	4,100 {N} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Fluorene									
d)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Indeno(1,2,3-c									
	mg/kg mg/kg	160 {N} 230 {N}	2,000 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Naphthalene Phenanthrene									
	mg/kg	230 (N)	3,100 {N}		NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	Pyrene
	mg/kg	0.16 {C}	1.4 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PCBs Aroclor-1254									
1ICS	mg/kg	7.000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	Acetone									
de	mg/kg	780 (N)	10,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Carbon Disulfic									
oride	mg/kg mg/kg	 05 (C)	380 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	d-Limonene Methylene Chl									
iene	mg/kg	85 {C}			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	p-Isopropyltolu									
	mg/kg	630 (N)	8,200 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Toluene									
Organics halene	malka	31 JNI)	410 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Semivolatile (2-Methylnaphtl
naterie	mg/kg mg/kg		6,100 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37] <0.38 [<0.37]	<0.34 [<0.37] <0.34 [<0.37]	NA NA	NA NA	<0.37	Acenaphthene
	mg/kg	2,300 {N}	31,000 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	< 0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Anthracene
acene	mg/kg mg/kg		3.9 {C} 0.39 {C}		<0.33 <0.33	<0.36 <0.36	<0.36 <0.36	<0.37 <0.37	<0.34 <0.34	<0.39 <0.39	<0.49 <0.49	<0.35 <0.35	<0.38 <0.38	NA NA	<0.37 <0.37	<0.43 <0.43	<0.37 <0.37	<0.38 <0.38	<0.38 <0.38	<0.37 <0.37	<0.38 [<0.37] <0.38 [<0.37]	<0.34 [<0.37] <0.34 [<0.37]	NA NA	NA NA	<0.37 <0.37	Benzo(a)anthra Benzo(a)pyren
inthene	mg/kg	0.22 (C)	3.9 {C}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 J [<0.37 J]	<0.34 J [<0.37 J]	NA	NA NA	<0.37 J	Benzo(b)fluora
rylene	mg/kg				< 0.33	<0.36	<0.36 J	<0.37 J	<0.34 J	<0.39 J	<0.49 J	<0.35	<0.38 J	NA NA	<0.37 J	<0.43 J	<0.37 J	<0.38	<0.38	<0.37	<0.38 J [<0.37 J]	<0.34 J [<0.37 J]	NA NA	NA NA	<0.37 J	Benzo(g,h,i)pe
nthene yl)phthalate	mg/kg mg/kg	2.2 {C} 46 {C}	39 {C} 200 {C}		0.030 <0.33	<0.36 <0.36	<0.36 <0.36	<0.37 <0.37	<0.34 <0.34	<0.39 <0.39	<0.49 <0.49	<0.35 <0.35	<0.38 <0.38	NA NA	<0.37 <0.37	<0.43 <0.43	<0.37 <0.37	<0.38 <0.38	<0.38 <0.38	<0.37 <0.37	<0.38 [<0.37] <0.38 [<0.37]	<0.34 [<0.37] <0.34 [<0.37]	NA NA	NA NA	<0.37 <0.37	Benzo(k)fluora bis(2-Ethylhex
halate	mg/kg		20,000 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Butylbenzylpht
	mg/kg	32 {C}	140 {C}		<0.33 <0.33	<0.36	<0.36 <0.36	<0.37	<0.34	<0.39	<0.49	<0.35 <0.35	<0.38 <0.38	NA NA	<0.37	<0.43	<0.37 <0.37	<0.38	<0.38	<0.37 <0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA NA	NA NA	<0.37 <0.37	Carbazole
nthracene	mg/kg mg/kg	22 {C} 0.022 {C}	390 {C} 0.39 {C}		<0.33	<0.36 <0.36	<0.36	<0.37 <0.37	<0.34 <0.34	<0.39 <0.39	<0.49 <0.49	<0.35	<0.38	NA NA	<0.37 <0.37	<0.43 <0.43	<0.37	<0.38 <0.38	<0.38 <0.38	<0.37	<0.38 [<0.37] <0.38 J [<0.37 J]	<0.34 [<0.37] <0.34 J [<0.37 J]	NA NA	NA NA	<0.37 <0.37 J	Chrysene Dibenzo(a,h)ar
	mg/kg	7.8 {N}	100 (N)		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Dibenzofuran
alate alate	mg/kg mg/kg	780 {N}	10,000 {N}		<0.33 <0.33	<0.36 <0.36	<0.36 <0.36	<0.37 <0.37	<0.34 <0.34	<0.39 <0.39	<0.49 <0.49	<0.35 <0.35	<0.38 <0.38	NA NA	<0.37 <0.37	<0.43 <0.43	<0.37 <0.37	<0.38 <0.38	<0.38 <0.38	<0.37 <0.37	<0.38 [<0.37] <0.38 [<0.37]	<0.34 [<0.37] <0.34 [<0.37]	NA NA	NA NA	<0.37 <0.37	Di-n-Butylphtha Di-n-Octylphtha
alate	mg/kg		4,100 {N}		0.040 B	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA NA	NA NA	<0.37	Fluoranthene
-10	mg/kg	310 (N)	4,100 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Fluorene
d)pyrene	mg/kg mg/kg	0.22 {C} 160 {N}	3.9 {C} 2,000 {N}		<0.33 <0.33	<0.36 <0.36	<0.36 J <0.36	<0.37 J <0.37	<0.34 J <0.34	<0.39 J <0.39	<0.49 J <0.49	<0.35 <0.35	<0.38 J <0.38	NA NA	<0.37 J <0.37	<0.43 J <0.43	<0.37 J <0.37	<0.38 <0.38	<0.38 <0.38	<0.37 <0.37	<0.38 J [<0.37 J] <0.38 [<0.37]	<0.34 J [<0.37 J] <0.34 [<0.37]	NA NA	NA NA	<0.37 J <0.37	Indeno(1,2,3-c Naphthalene
nylamine	mg/kg	130 (C)	580 {C}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA NA	NA NA	<0.37	N-Nitrosodiphe
	mg/kg	230 (N)	3,100 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Phenanthrene
on last page.	mg/kg	230 (N)	3,100 {N}		<0.33	<0.36	<0.36	<0.37	<0.34	<0.39	<0.49	<0.35	<0.38	NA	<0.37	<0.43	<0.37	<0.38	<0.38	<0.37	<0.38 [<0.37]	<0.34 [<0.37]	NA	NA	<0.37	Pyrene See footnotes
o last page.																										200 .0001000

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

ample Name:	Adjusted	Adjusted	Facility-Wide	WBGTP12A	WBGTP12S	WBGTP13A	WBGTP13B	WBGTP13S	WBGTP14A	WBGTP14B	WRGTP15A	WBGTP16A	WBGTP16A2	WBGTP17A	WBGTP18A	WBGTP18S	WBGTP19A	WBGTP19S	WBGSB12	WBGSB13	WBGSB13A	WBGSB14	WBGSB14A	WBGSB15	5
ple Depth (ft):	Soil RBC	Soil RBC	Background	2.5 - 3	0.5 - 1	1.5 - 2	1 - 1.5	1.5 - 2	2 - 2.5	1.5 - 2	1.5 - 2	0.5 - 1	0.5 - 1	0.5 - 1	1 - 1.5	1 - 1.5	2.5 - 3	2.5 - 3	0 - 4	0 - 2	2 - 4	0-2	2 - 4	0 - 2	Sam
ate Collected: Unit		(Industrial)	Point	07/15/99	07/15/99	07/22/99	07/22/99	07/22/99	07/22/99	07/22/99	07/15/99	07/22/99	09/14/99	07/22/99	07/22/99	07/22/99	07/29/99	07/29/99	08/18/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	Dani
ato concotour one	(**************************************	<mark>,</mark> (,		01710700	01710700	01722700	0.722,00	01/22/00	01/22/00	01722700	017.0700	01/22/00	00/11/00	0.722,00	0.722,00	0.722,00	0.720,00	01720700	00,10,00	10/00/00	10/00/00	.0,00,00	10/00/00	. 0, 0 0, 0 0	Inorganics
mg/l	7.800 (N)	100.000 {N	40.041	9.390	11.300	9.150	11.000	18.700	11.400	25.400	8.690	12.100	9.020	15.200	23.800	12.300	13.500	12.400	18.300	10.600 [10.300]	11.700 [14.100]	16.000	11.400	10.400	Aluminum
mg/l	5 / ()	40.88 {N}		<0.560	<0.610	0.710 B	1.20 B	1.30 B	<0.650	1.50 B	<0.590	1.00 B	1.20 B	1.10 B	1.40 B	0.700 B	<0.620	<0.640	1.70 B	<0.490 [<0.500]	<0.500 [<0.500]	<0.590	<0.620	<0.490	Antimony
mg/l	-	1.91 (C)	15.8 (C)	7.50 B	8.70	3.80 B	4.90 B	5.30 B	5.10 B	10.7 K	4.00 B	5.50	8.10 K	6.50 B	4.70 B	7.00 B	9.60	8.80	9.80 K	6.80 B [8.70 L]	8.00 L [8.40 L]	11.3 L	8.40 L	7.40 B	Arsenic
mg/l		20,440 {N}	209 {N}	132	108	21.7 J	24.3	73.1	19.7 J	47.5	26.7	12.2 J	69.4	14.5 J	69.2	38.0	31.3	36.5	23.8 J	14.7 J [19.8 J]	27.8 [24.3]	17.2 J	24.4 J	17.0 J	Barium
mg/l	q 15.6 {N}	204.4 {N}	1.02 {N}	0.340 B	0.490 B	0.310 B	0.790 B	2.50 J	0.690 B	1.70 J	0.240 B	0.590 B	3.40	0.960 B	3.90 J	0.880 B	0.810 B	0.860 B	0.550 B	0.590 B [0.620 B]	1.30 B [1.00 B]	0.680 B	0.690 B	0.670 B	Beryllium
mg/l	g 3.9 {N}	51.1 {N}	0.69 {N}	0.360 K	0.190 K	<0.120	<0.120	<0.110	<0.130	<0.160	<0.120	< 0.130	<0.110	<0.130	<0.140	<0.120	<0.120	<0.130	<0.120	<0.100 [<0.100]	<0.100 [<0.100]	<0.120	<0.120	<0.100	Cadmium
mg/l	g			29,000	2,610	2,870	2,330	7,740	2,660	9,800	1,750	1,400	4,670	2,200	3,600	1,460	1,500	1,750	1,300	714 [1,040]	1,230 [1,480]	826	1,450	643	Calcium
mg/l	g 23.5 {N}	306.6 {N}	65.3 {N}	23.4	37.3	46.2	42.4	45.8	31.7	67.0	22.4	47.4	22.0	45.0	72.8	32.1	30.3	33.5	35.7	23.9 [28.2]	37.3 [29.6]	32.3	30.6	24.1	Chromium
mg/l	g		72.3	5.60 K	8.90 K	3.20 K	21.1 K	20.1 K	7.80 K	10.5 K	2.20 K	7.00 K	18.7	10.2 K	28.4 K	10.3 K	10.1	14.1	8.30	6.20 [22.6]	23.0 [14.4]	17.9	7.70	7.50	Cobalt
mg/l	g 312.9 {N}	4,088 {N}	53.5 {N}	55.8	108	19.3 K	24.0 K	26.3 K	27.0 K	36.0 K	10.1 K	21.1 K	31.6	30.7 K	35.7 K	28.4 K	23.6	26.1	20.0	17.7 [20.4]	18.2 [25.5]	24.6	21.8	18.4	Copper
mg/l	g 2,346 {N}	30,660 {N}	50,962 {N}	19,700	33,600	32,100	39,200	34,200	37,700	52,400	17,100	36,200	32,700	47,700	52,900	34,700	34,800	34,800	36,400	29,000 [32,800]	27,800 [39,800]	40,300	31,600	30,300	Iron
mg/l		750	26.8	161	116	135	113	140	42.4	41.0	12.1 K	681	34.2	21.9	27.4	40.2	15.7	27.5	19.0	19.3 [25.3]	25.5 [29.0]	33.3	21.3	18.0	Lead
mg/l	iq			7,470	1,340	1,090	1,050	10,500	939	14,000	1,900	608 J	2,810	509 J	5,450	1,330	1,020	920	866	434 J [474 J]	2,510 [897]	699	912	526	Magnesium
mg/l	g 156.4 {N}	2,044 {N}	2,543 {N}	115	152	72.8	152	297	94.7	157	59.0	57.3	911	65.9	146	170	105	150	111	79.9 [162]	241 [183]	192	83.2	92.5	Manganese
mg/l	g 2.35	30.66	0.13	<0.110	<0.120	<0.120	<0.120	<0.120	<0.130	<0.160	<0.120	<0.130	0.240	<0.110	<0.140	<0.120	<0.120	< 0.130	0.200	<0.100 [<0.100]	<0.100 [<0.100]	<0.110	<0.120	<0.100	Mercury
mg/l	g 156.4 {N}	2,044 {N}	62.8 {N}	7.30	10.6	4.00 K	9.40 K	27.6 K	9.10 K	21.1 K	2.30 J	7.70 K	37.0	15.2 K	37.3 K	9.70 K	11.4	12.5	12.8	9.00 [8.60]	13.6 [15.7]	13.8	10.7	9.60	Nickel
mg/l	g			1,050 J	544 J	441 J	639 J	1,860 J	1,030 J	3,340 J	599 J	581 J	501 J	431 J	988 J	562 J	655	618 J	969	488 J [528]	861 [619]	858	788	512	Potassium
mg/l	g 39.1 {N}	511 {N}		< 0.560	< 0.610	<0.590 L	<0.600 L	<0.560 L	<0.650 L	<0.800 L	< 0.590	<0.630 L	<0.560 L	<0.630 L	<0.700 L	<0.620 L	< 0.620	< 0.640	< 0.610	<0.490 L [<0.500 L]	<0.500 L [<0.500 L]	<0.590 L	<0.620 L	<0.490 L	Selenium
mg/l	g 39.1 {N}	511 {N}		0.160 B	0.260 B	0.260 B	0.720 B	<0.110	0.170 B	0.170 B	0.150 B	0.130	<0.110 L	0.240 B	<0.140	0.130 B	<0.120	<0.130	<0.120	1.50 [1.90]	1.60 [2.30]	<0.120	<0.120	1.80	Silver
mg/l				212 B	165 B	148 B	139 B	162 B	<1.00	23.2 B	162 B	144 B	119 B	150 B	193 B	138 B	246 B	236	90.0 B	119 B [113 B]	102 B [103 B]	176 B	163 B	91.8 B	Sodium
mg/l	5	7.154 {N}	2.11 {N}	<0.780	<0.850	<0.830	<0.850	<0.790	<0.910	<1.10	<0.830	<0.890	<0.780 L	<0.880	<0.980	<0.880	<0.860	<0.900	<0.850 J	<0.690 [<0.700]	<0.700 [<0.690]	<0.830	<0.880	<0.680	Thallium
mg/l	,	102.2 {N}	108 {N}	38.4 K	63.1 K	56.2 K	68.3 K	63.6 K	65.9 K	96.4 K	37.3 K	67.9 K	51.6	87.9 K	99.4 K	59.8 K	55.5	56.4	65.9	49.7 [58.5]	52.5 [68.9]	78.5	62.2	55.7	Vanadium
mg/l	g 2,346 {N}	30,660 {N}	202 {N}	305	613	90.2 J	48.5 J	42.3 J	93.4 J	85.6 J	23.3 K	80.6 J	173	46.9 J	44.3 J	60.5 J	19.1	36.3	32.8	25.7 K [32.4 K]	28.4 K [29.6 K]	30.3	33.0	23.7 K	Zinc
CLP																									Inorganics - T
μg/l	- /			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic
μg/l				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Barium
μg/l				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Cadmium
μg/l	-,			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Chromium
μg/l	- /			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Lead
μg/l				NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	Mercury
μg/l				NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	Selenium
μg/l	5,000*			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Silver
S	T	1				T 110		T	T 114 '			1 14	T 114								L		L		Miscellaneou
				NA .	NA 7.0	NA 7	NA 7.45	NA 7.05	NA 0.05	NA	NA 7.05	NA 0.05	NA	NA 0.0	NA	NA 7.0	NA 5.4	NA 5.05	NA NA	NA NA	NA NA	NA	NA NA	NA	Percent Solids
pH Ur				7.4	7.6	7	7.15	7.05	6.95	6.9	7.25	6.95	NA	6.8	6.8	7.2	5.1	5.85	NA	NA NA	NA NA	NA	NA	NA	pH
Carbon mg/l	g			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Total Organic (

on last page

See footnotes

ample Name:		Adjusted	Adjusted	Facility-Wide	WBGSB15A	WBGSB16	WBGSB16A	WBGSB17	WBGSB17A	WBGSB18	WBGSB18A	WBGSB19	WBGSB19A	WBGSB20	WBGSB20A	WBGSB21	WBGSB21A	WBGSB22A	WBGSB22B	WBGSB22C	WBGSB23A	WBGSB23B	WBGSB23C	WBGSB24A
ple Depth (ft): ate Collected:	Units	Soil RBC (Residential)	Soil RBC (Industrial)	Background Point	2 - 4 10/06/99	0 - 2 10/06/99	2 - 4 10/06/99	0 - 2 10/06/99	2 - 4 10/06/99	0 - 2 10/06/99	2 - 4 10/06/99	0 - 0.5 06/18/02	2 - 4 06/19/02	6 - 8 06/19/02	0 - 0.5 06/18/02	2 - 4 06/19/02	6 - 8 06/19/02	0 - 0.5 06/18/02						
IpCDD	mg/kg				NA	NA	NA	NA	NA	NA	0.0000203	0.0002122 J	0.00001232	0.00002764	0.00001744 J	0.00000181	0.00002537							
lpCDF lpCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.000001 <0.0000005	0.00003587 J 0.00000405 J	0.00000137 0.00000016 J	0.0000013 <0.00000007	0.00000016 J <0.00000004	0.00000016 <0.00000003	0.00000463 0.00000023							
CDD	mg/kg				NA	NA	NA	NA	NA	NA	0.00000028	0.00000663 J	0.00000026	0.00000055	<0.00000007	<0.0000007	0.00000029							
CDF CDD	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00000019 0.00000037 J	0.0000183 J 0.00001314 J	0.0000006 0.00000045	0.00000032 0.00000079	<0.00000003 <0.00000005	<0.00000003 <0.00000006	0.00000062 0.00000076							
CDF	mg/kg				NA	NA	NA	NA	NA	NA	0.00000018 J	0.00000849 J	0.00000027	0.00000039 J	<0.00000003	<0.00000003	0.00000047 J							
CDD CDF	mg/kg mg/kg	0.0001 {C}	0.00046 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00000104 <0.00000007	0.00002096 J 0.00000182 J	0.00000881 <0.00000005	0.00000162 <0.00000009	0.00000032 J <0.00000005	0.00000031 <0.00000004	0.00000105 <0.00000003							
OD OF	mg/kg				NA	NA	NA	NA	NA	NA	<0.0000001	0.00000413 J	0.00000025 J	<0.00000011	<0.00000006	<0.00000007	0.0000002							
CDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		0.00000416 J 0.00000528 J	0.00000019 0.00000026	<0.00000008 0.00000014	<0.00000004 <0.00000004	<0.00000004 <0.00000004	0.0000001 0.00000017 J							
DF	mg/kg		 0.000019 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000008 <0.00000006	0.00000641 J 0.00000404 J	0.00000024 <0.00000007	<0.00000009 0.00000151	<0.00000005 <0.00000005	<0.00000004 <0.00000005	0.00000013							
	mg/kg mg/kg	0.0000043 {C}			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000006 J		0.00000007 0.000000035 J	<0.00000131 <0.000000007 J	<0.00000003	<0.00000003	0.00000032 J <0.00000021 J							
	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.003301 J	0.003034 J 0.00005688 J	0.001028 J 0.00000242 B	0.002912 J 0.0000027 B	0.006013 J 0.00000155 B	0.0001833 J 0.0000014 B	0.003963 J 0.00001049 J							
	mg/kg				NA	NA	NA	NA	NA	NA	0.00004377	0.0004875 J	0.00003006	0.00005739	0.00003269 J	0.00000382	0.00005008							
	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00000221 0.00000519	0.0000816 J 0.0001282 J	0.00000247 0.000014	0.00000266 0.0000097	0.00000052 J 0.00000054 J	0.00000066 0.00000031	0.00001178 0.00000502							
	mg/kg				NA	NA	NA	NA	NA	NA	0.00000079	0.00007702 J	0.00000113	0.00000112	<0.00000003	<0.00000003	0.00000378							
	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0000001 0.00000035	0.00001327 J 0.00006234 J	<0.00000008 0.00000074	<0.00000011 0.00000066	<0.00000006 <0.00000004	<0.00000007 <0.00000004	0.0000002 0.00000112							
	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000006 0.00000041	0.00002637 J 0.0001252 J	<0.00000007 0.00000428	0.00000244 0.00000176	<0.00000005 <0.00000003	<0.00000005 <0.00000003	0.00000094 0.00000192							
	mg/kg						NA NA							NA										
Tetranitrate	mg/kg				NA	NA	NA	NA	NA	NA	<0.3	<0.35	<0.37	<0.3	<0.41	<0.38	0.11 J							
	mg/kg mg/kg	63 {N} 78 {N}	820 {N} 1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0101 <0.0201	NA NA	NA NA	<0.0101 <0.0202	NA NA	NA NA	<0.0102 0.0107 J							
	mg/kg mg/kg	230 {N} 7.8 {N}	3,100 {N} 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0392 J <10.1	NA NA	NA NA	0.0223 J 2.56 J	NA NA	NA NA	0.163 <10.2							
ne Pesticides	mg/kg	7.0 (14)	100 (14)		IVA	NA.	INA	INA	INA	NA .	NA	IVA	IVA	INA	INA	INA	INA	\10.1	INA	IVA	2.30 3	NA	INA	<10.2
	mg/kg mg/kg	2.7 {C} 0.04 {C}	12 {C} 0.18 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0067 <0.0067 J	NA NA	NA NA	<0.00672 <0.00672 J	NA NA	NA NA	<0.00681 0.00472 J							
halene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	0.0016 B	0.0093	0.001 B	0.0028 B	0.0063	0.0062	0.0029 B							
	mg/kg	470 {N} 230 {N}	6,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0017 <0.0017	0.003 B 0.0016 J	<0.0021 <0.0021	<0.0017 <0.0017	0.0032 B 0.0027	0.0037 B 0.0038	0.036 <0.0017							
ie	mg/kg mg/kg	2,300 {N}	31,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00017 0.00037 J	0.0016 3	<0.0021	<0.0017	<0.0027	0.0036 0.0011 J	0.089							
acene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0019 0.0017	0.21 0.33	0.0026 0.0029	0.0037 0.0064	<0.0023 <0.0023	<0.0022 <0.0022	0.58 0.54							
inthene	mg/kg	0.022 {C} 0.22 {C}	3.9 {C}		NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	0.0034	0.53	0.0053	0.013	<0.0023	<0.0022	0.97
rylene	mg/kg mg/kg	2.2 {C}	 39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0017 0.001 J	0.23 0.15	0.0023 0.0016 J	0.0082 0.0036	<0.0023 <0.0023	<0.0022 <0.0022	0.56 0.26							
	mg/kg	22 {C}	390 (C)		NA	NA	NA	NA	NA	NA	0.0018	0.21	0.0024	0.0053	<0.0023	<0.0022	0.59							
nthracene	mg/kg mg/kg	0.022 {C} 310 {N}	0.39 {C} 4,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0017 0.0031	0.062 J 0.23	<0.0021 0.0037	0.0026 0.0069	<0.0023 0.00096 J	<0.0022 <0.0022	0.13 0.97							
1)	mg/kg	310 (N)	4,100 {N}		NA	NA	NA	NA	NA	NA	<0.0017	0.0046	<0.0021	0.00094 J	0.002 J	0.0024	0.028							
d)pyrene	mg/kg mg/kg	0.22 {C} 160 {N}	3.9 {C} 2,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0018 0.00087 B	0.28 0.0089	0.0027 0.0013 B	0.0094 0.0016 B	<0.0023 0.0079 B	<0.0022 0.0068 B	0.6 0.0027 B							
	mg/kg mg/kg	230 {N} 230 {N}	3,100 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.002 0.0028	0.099 0.26 J	<0.0021 0.0043 J	0.0045 0.007	0.0016 J 0.0012 J	0.002 J <0.0022 J	0.62 1.1							
		` '																						
nics	mg/kg				NA	NA	NA	NA	NA	NA	<0.030	0.87	<0.040	<0.030	<0.040	<0.040	<0.030							
de	mg/kg mg/kg	7,000 {N} 780 {N}	92,000 {N} 10,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.043 B <0.0045	<0.0053 <0.0053	<0.0063 <0.0063	<0.0055 <0.0055	<0.0069 <0.0069	<0.0064 0.00046 B	<0.0051 <0.0051							
orid-	mg/kg	′			NA	NA	NA	NA	NA	NA	NA	NA	NA	0.17 J	NA	NA	NA							
oride iene	mg/kg mg/kg	85 {C}	380 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0045 NA	<0.0053 NA	<0.0063 NA	<0.0055 NA	<0.0069 NA	<0.0064 NA	<0.0051 NA							
Organics	mg/kg	630 {N}	8,200 {N}		NA	NA	NA	NA	NA	NA	0.00032 B	<0.0053	<0.0063	0.0011 B	<0.0069	<0.0064	<0.0051							
halene	mg/kg	31 {N}	410 {N}		<0.37	NA	NA	NA	NA	NA	NA	<0.37 [<0.35]	<0.35 [<0.38]	NA	NA	<0.37	<0.030	<0.17	0.011 J	<0.21	<0.17	<0.23	<0.22	<0.17
	mg/kg mg/kg	470 {N} 2,300 {N}	6,100 {N} 31,000 {N}		<0.37 <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35] <0.37 [<0.35]	<0.35 [<0.38] <0.35 [<0.38]	NA NA	NA NA	<0.37 <0.37	<0.030 <0.030	<0.17 <0.17	<0.20 0.031 J	<0.21 <0.21	<0.17 <0.17	<0.23 <0.23	<0.22 <0.22	0.023 J 0.061 J
acene	mg/kg	0.22 {C}	3.9 {C}		<0.37	NA	NA	NA	NA	NA	NA	<0.37 [<0.35]	<0.35 [<0.38]	NA	NA	< 0.37	<0.030	<0.17	0.28	<0.21	0.0085 J	<0.23	<0.22	0.38
ie inthene	mg/kg mg/kg	0.022 {C} 0.22 {C}	0.39 {C} 3.9 {C}		<0.37 <0.37 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35] <0.37 J [<0.35 J]	<0.35 [<0.38] <0.35 J [<0.38 J]	NA NA	NA NA	<0.37 <0.37 J	<0.030 <0.12 J	<0.17 <0.17	0.55 0.76	<0.21 <0.21	<0.17 <0.17	<0.23 <0.23	<0.22 <0.22	0.37 0.73
rylene	mg/kg				<0.37 J	NA	NA	NA	NA	NA	NA	<0.37 J [<0.35 J]	<0.35 J [<0.38 J]	NA	NA	<0.37 J	<0.030 J	<0.17	0.62	<0.21	<0.17	<0.23	<0.22	0.31
nthene yl)phthalate	mg/kg mg/kg	2.2 {C} 46 {C}	39 (C) 200 (C)		<0.37 <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35] <0.37 [<0.35]	<0.35 [<0.38] <0.35 [<0.38]	NA NA	NA NA	<0.37 <0.37	<0.11 <0.070	<0.17 0.16 B	0.23 0.83 B	<0.21 <0.21	<0.17 0.21 B	<0.23 <0.23	<0.22 <0.22	0.19 0.16 B
halate	mg/kg	1,600 {N}	20,000 {N}		<0.37 <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35]	<0.35 [<0.38]	NA NA	NA NA	<0.37	<0.030	<0.17 <0.17	0.16 B	<0.21	<0.17 <0.17	<0.23	<0.22	<0.17 0.10 J
	mg/kg mg/kg	32 {C} 22 {C}	140 {C} 390 {C}		<0.37	NA NA	NA	NA NA	NA	NA	NA	<0.37 [<0.35] <0.37 [<0.35]	<0.35 [<0.38] <0.35 [<0.38]	NA	NA NA	<0.37 <0.37	<0.050 <0.030	<0.17	0.023 J 0.36	<0.21 J <0.21	<0.17	<0.23 J <0.23	<0.22 J <0.22	0.47
nthracene	mg/kg mg/kg	0.022 {C} 7.8 {N}	0.39 {C} 100 {N}		<0.37 J <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 J [<0.35 J] <0.37 [<0.35]	<0.35 J [<0.38 J] <0.35 [<0.38]	NA NA	NA NA	<0.37 J <0.37	<0.050 J <0.060	<0.17 <0.17	0.17 J 0.010 J	<0.21 <0.21	<0.17 <0.17	<0.23 <0.23	<0.22 <0.22	<0.17 0.011 J
alate	mg/kg	780 (N)	10,000 {N}		<0.37	NA	NA	NA	NA	NA	NA	<0.37 [<0.35]	<0.35 [<0.38]	NA	NA	<0.37	<0.030	<0.17	<0.20	<0.21	<0.17	<0.23	<0.22	<0.17
alate	mg/kg mg/kg	310 {N}	4,100 {N}		<0.37 <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35] <0.37 [<0.35]	<0.35 [<0.38] <0.35 [<0.38]	NA NA	NA NA	<0.37 <0.37	<0.030 <0.030	<0.17 <0.17	<0.20 0.39	<0.21 <0.21	0.016 J 0.0089 J	<0.23 <0.23	<0.22 <0.22	<0.17 0.89
	mg/kg	310 (N)	4,100 {N}		<0.37	NA	NA	NA	NA	NA	NA	<0.37 [<0.35]	<0.35 [<0.38]	NA	NA	< 0.37	<0.030	<0.17	<0.20	<0.21	<0.17	<0.23	<0.22	0.016 J
d)pyrene	mg/kg mg/kg	0.22 {C} 160 {N}	3.9 {C} 2,000 {N}		<0.37 J <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 J [<0.35 J] <0.37 [<0.35]	<0.35 J [<0.38 J] <0.35 [<0.38]	NA NA	NA NA	<0.37 J <0.37	<0.030 J <0.030	<0.17 <0.17	0.70 J 0.015 J	<0.21 <0.21	<0.17 <0.17	<0.23 <0.23	<0.22 <0.22	0.32 <0.17
enylamine	mg/kg	130 {C}	580 (C)		<0.37	NA	NA	NA	NA	NA	NA	<0.37 [<0.35]	<0.35 [<0.38]	NA	NA	<0.37	<0.030	<0.17	<0.20	<0.21	<0.17	<0.23	<0.22	<0.17
	mg/kg mg/kg		3,100 {N} 3,100 {N}		<0.37 <0.37	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.37 [<0.35] <0.37 [<0.35]	<0.35 [<0.38] <0.35 [<0.38]	NA NA	NA NA	<0.37 <0.37	<0.030 <0.030	<0.17 <0.17	0.17 J 0.39	<0.21 <0.21	<0.17 0.0068 J	<0.23 <0.23	<0.22 <0.22	0.43 0.67
on last page.	59	(* ')	()									[00]	[5.00]								,			2.21

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

		A altrophysical	A altreate at	Facility-Wide																				
ample Name:		Adjusted	Adjusted		WBGSB15A	WBGSB16	WBGSB16A	WBGSB17		WBGSB18	WBGSB18A	WBGSB19	WBGSB19A	WBGSB20	WBGSB20A	WBGSB21	WBGSB21A	WBGSB22A	WBGSB22B	WBGSB22C	WBGSB23A	WBGSB23B	WBGSB23C	WBGSB24A
ple Depth (ft):		Soil RBC	Soil RBC	Background Point	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	0 - 0.5	2 - 4	6 - 8	0 - 0.5	2 - 4	6 - 8	0 - 0.5
ate Collected:	Units (Residential)	(Industrial)	Politi	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	10/06/99	06/18/02	06/19/02	06/19/02	06/18/02	06/19/02	06/19/02	06/18/02
	malka	7 900 (NI)	100 000 (N)	40.041	14 600	12 700 [12 200]	15 000	15,400	15,700	4E 700	12,900	14 500 [10 700]	8,650 [8,290]	20,900	4E 700	11 100	14600	18,200	20.000	33,200	22 000	24 100	44 600	22 100
	mg/kg	,	100,000 {N}	40,041	14,600	13,700 [13,200]	15,900			15,700		14,500 [10,700]			15,700	11,100	14,600		20,900		23,900	24,100	41,600	22,100
	mg/kg	3.13 {N}	40.88 {N}	45.0 (0)	<0.500	<0.610 [<0.610]	<0.630	<0.640	<0.640	<0.590	<0.590	<0.500 [<0.500]	<0.500 [<0.490]	<0.590	<0.610	<0.490	0.610 J	<0.500 L	4.26 L	0.280 B	<0.500 L	0.270 B	0.390 B	0.290 B
	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	9.20 L	12.5 L [12.0 L]	12.5 L	11.9 L	13.0 L	10.2 L	8.10 L	5.40 B [5.10 B]	6.40 B [5.60 B]	9.90 L	14.3 L	8.50 L	11.6 L	7.53 L	29.0 L	7.54 L	6.55 L	8.64 L	9.92 L	7.73 L
	mg/kg		20,440 {N}	209 {N}	17.6 J	26.3 [22.9 J]	20.7 J	19.6 J	17.1 J	18.5 J	16.4 J	20.0 [22.7]	23.0 [19.0 J]	17.5 J	23.9 J	25.5	22.0 J	26.9	295	147	37.8	34.1	136	54.3
	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.10 B	0.960 B [0.680 B]	0.930 B	0.770 B	0.810 B	0.560 B	0.350 B	1.00 B [0.720 B]	0.530 B [0.430 B]	1.10 B	0.660 B	0.710 B	0.750 B	0.440 B	0.560 B	2.35 J	0.750 L	1.09 J	1.55 J	0.640 L
	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.100 1.250	<0.120 [<0.120]	<0.130 1.420	<0.130	<0.130 1.430	<0.120	<0.120	<0.100 [<0.100]	<0.100 [<0.100]	<0.0100 1.680	<0.120	<0.100 1.220	<0.120 1.360	<0.100 947	2.95	<0.120 4.310	<0.100 1.020	<0.130 1.410	<0.120	0.0900 J
	mg/kg				,	1,300 [1,190]		1,130		836	843	760 [920]	828 [776]	, , , , ,	2,940		,		31,500	,	,		3,610	2,130
	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	43.1	37.5 [34.1]	41.1	39.4	40.4	38.8	38.7	35.3 [28.8]	22.6 [20.5]	45.7	41.3	28.8	34.8	30.3	256 L	56.6 L	33.3	41.6 L	61.5 L	41.3
	mg/kg			72.3	10.6	31.4 [14.8]	10.1	11.0	7.30	6.30	5.40 J	7.10 [7.60]	8.10 [7.90]	17.7	8.90	8.60	10.0	8.86 J	10.8	17.7	9.60 J	13.0	13.1	6.59 J
	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	27.2	29.8 [24.5]	23.9	27.4	31.4	22.9	19.9	21.3 [15.5]	11.9 [13.1]	32.3	27.5	19.3	26.5	16.4	174	32.5	19.3	23.9	22.2	32.1
	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	42,700	46,700 [40,300]	42,500	44,300	48,800	39,700	39,800	39,200 [27,300]	23,400 [22,800]	43,400	47,100	32,300	40,600	26,300	61,800 J	36,100 J	28,700	36,900 J	41,000 J	31,300
	mg/kg	400	750	26.8	25.6	44.4 [29.9]	25.3	26.9	26.9	19.6	12.6	15.1 [14.8]	18.0 [14.5]	28.9	23.6	24.0	24.0	25.3 J	965	86.5	26.9 J	21.5	18.1	79.1
	mg/kg				372 J	693 [588 J]	12,000	698	708	609	713	627 [967]	481 J [518]	2,480	808	784	605	1,700	18,300	33,000	1,540	2,150	17,600	1,500
	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	71.5	241 [160]	125	119	119	74.6	47.4	45.7 [197]	129 [103]	119	148	158	127	122	633	374	72.2	235	275	122
	mg/kg	2.35	30.66	0.13	0.140 K	<0.120 [<0.120]	<0.120	<0.130	<0.120	<0.120	<0.120	<0.100 [<0.100]	<0.100 [<0.100]	0.160 K	0.180 K	<0.100	<0.120	0.0600	0.0500 J	0.0800	0.0400 J	0.0700	0.0300 J	0.0600
	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	19.5	14.4 [12.1]	14.1	13.8	16.0	12.6	7.60	12.2 [8.90]	6.70 [5.30]	20.0	14.4	9.40	13.8	15.3	35.4	35.6	17.4	21.0	36.9	18.4
	mg/kg				634	690 [621]	1,030	728	981	534 J	708	670 [523]	652 [646]	1,420	973	442 J	629	759	1,790	2,050	1,260	1,150	2,300	813
	mg/kg	39.1 {N}	511 (N)		<0.500 L 2.00	<0.610 L [<0.610 L]	<0.630 L <0.130	<0.640 L <0.130	<0.640 L <0.130	<0.590 L	<0.590 L <0.120	<0.500 L [<0.500 L]	<0.500 L [<0.490 L]	<0.590 L	<0.610 L <0.120	<0.490 L	<0.590 L <0.120	0.750 L <1.01	<1.17 L	<1.26 L	0.740 L	0.860 B <1.37	<1.27 L <1.27	0.590 L
	mg/kg	39.1 {N}	511 (N)		2.00 95.7 B	<0.120 [<0.120] 149 B [144 B]	163 B	142 B	<0.130 151 B	<0.120 134 B	<0.120 126 B	2.20 [1.50] 104 B [107 B]	1.40 [1.30] 92.7 B [97.2 B]	<0.120 131 B	<0.120 154 B	1.70 95.2 B	<0.120 124 B	10.5 B	<1.17 113	<1.26 23.0 B	<1.01 25.2 B	58.1	<1.27 59.5	<1.02 14.4 B
	mg/kg mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	95.7 B <0.690	<0.850 [<0.850]	<0.880	<0.890	<0.890	<0.830	<0.820	<0.690 [<0.700]	<0.700 [<0.690]	<0.820	<0.850	<0.680	<0.820	0.200 J	0.150 J	0.410 J	0.190 J	0.410 J	0.300 J	0.190 J
		7.0 (N)	102.2 {N}	108 {N}	76.2	81.6 [75.0]	74.9	83.5	88.9	80.6	71.0	70.2 [51.0]	42.1 [41.9]	84.6	92.3	57.3	77.5	48.6	48.1 L	57.2 L	54.9	68.5 L	73.9 L	57.5
	mg/kg mg/kg	2.346 (N)	30,660 {N}	202 {N}	31.8 K	54.7 [43.9]	39.7	40.1	53.3	29.2	16.9	28.1 K [17.7 K]	17.6 K [16.2 K]	38.2	38.3	33.7 K	40.0	36.3	1,510 J	50.0 J	34.5	37.6 J	42.6 J	130
CLP	ilig/kg	2,340 (14)	30,000 (14)	202 (11)	31.0 K	34.7 [43.8]	39.1	40.1	55.5	25.2	10.9	20.1 K [17.7 K]	17.0 K [10.2 K]	30.2	36.3	33.7 K	40.0	30.3	1,5103	30.0 3	34.5	37.03	42.03	130
	μg/L	5.000*			NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	μg/L μg/L	100.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	µg/L	1.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	na/l	5.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	ug/L	5.000*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	ua/L	200*			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	ua/L	1.000*			NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA NA
	µg/L	5,000*			NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA
S	. 5	.,														•								•
	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pl	H Units				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.31 J	NA	NA	NA
	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	25,600	NA	NA	NA

on last page

Sample Name:		Adjusted	Adjusted	Facility-Wide		WBGSB24C	WBGSB25A	WBGSB25B	WBGSB25C	WBGTR01	WBGSB26A	WBGSB27A	WBGSB28A	WBGSB29A	WBGSB30A	WBGSB31A	WBGSB32A	WBGSB33A	WBGSB34A	WBGSB35A	WBGSB36A	WBGSB37A	WBGSB38A	WBGSB39A	WBGSB40A
Sample Depth (ft): Date Collected:	Units	Soil RBC (Residential)	Soil RBC (Industrial)	Background Point	2 - 4 06/19/02	6 - 8 06/19/02	0 - 0.5 06/18/02	2 - 4 06/19/02	6 - 8 06/19/02	0 - 0.5 06/18/02	0 - 0.5 07/16/04	0 - 0.5 07/16/04	0 - 0.5 07/16/04	0 - 0.5 07/19/04	0 - 0.5 07/20/04	0 - 0.5 07/20/04	0 - 0.5 07/20/04	0 - 0.5 07/19/04	0 - 0.5 07/19/04	0 - 0.5 07/19/04					
Dioxin/Furan	Onito	(itoolaoitta)	(madotna)		00/10/02	00/15/02	00/10/02	00/15/02	00/13/02	00/10/02	07710704	01/10/04	07710704	01/10/04	01/13/04	01710704	07713704	01710/04	01710704	01120104	07720704	01720704	01/13/04	01/10/04	07713704
1,2,3,4,6,7,8-HpCDD	mg/kg				0.00002548	0.00000304	0.0001572	0.00000383	0.00000124	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				<0.00000013	<0.00000009	0.00003102	<0.00000016	<0.0000011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				<0.00000016	<0.00000011	0.00000205	<0.00000021	<0.00000015	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	mg/kg mg/kg				<0.00000021 <0.0000001	<0.00000021 <0.00000007	0.00000333 0.00000564	<0.00000027 <0.00000012	<0.00000022 <0.00000009	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDD	mg/kg				<0.00000016	<0.00000017	0.00000661	<0.00000012	<0.00000017	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
1,2,3,6,7,8-HxCDF	mg/kg				<0.000001	<0.00000007	0.00000508 J	<0.00000012	<0.00000009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		<0.00000016	<0.00000016	0.00000834	<0.00000021	<0.0000017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	mg/kg				<0.00000011 <0.00000015	<0.00000008 <0.00000011	0.00000045 0.00000173	<0.00000014 <0.00000017	<0.0000001 <0.00000013	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PeCDF	mg/kg mg/kg				<0.00000013	<0.00000071	0.00000173	<0.00000017	<0.00000013	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,6,7,8-HxCDF	mg/kg				<0.00000011	<0.00000008	0.00000238	<0.00000014	<0.0000001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				<0.00000011	<0.00000007	0.00000149	<0.0000011	<0.00000008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	mg/kg	0.0000043 {C	0.000019 (C)		<0.00000015	<0.00000013	0.00000077 J	<0.00000017	<0.00000013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF OCDD	mg/kg mg/kg				<0.00000013 0.005689 J	<0.00000011 0.0003054 J	0.0000017 J 0.002972 J	<0.00000014 0.0002626 J	<0.00000009 0.00005723 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
OCDF	mg/kg				0.0000023 J	0.00000093 J	0.0002972 3 0.00005862 J	<0.00000039 J	0.000003723 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				
Total HpCDDs	mg/kg				0.00004247	0.00000662	0.0003078	0.00000941	0.00000347	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HpCDFs	mg/kg				<0.00000013	<0.00000009	0.00007396	<0.0000016	0.0000009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDDs	mg/kg				0.00000173	<0.00000016	0.00007337	<0.00000021	<0.00000017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total HxCDFs Total PeCDDs	mg/kg mg/kg				<0.0000001	<0.00000007 <0.00000011	0.0000445 0.00000554	<0.00000012 <0.00000017	<0.00000009 <0.00000013	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total PeCDFs	mg/kg				<0.00000015	<0.00000011	0.00000334	<0.00000017	<0.00000013	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total TCDDs	mg/kg				<0.0000001	<0.00000007	0.00000671	<0.00000017	<0.0000000	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Total TCDFs	mg/kg				<0.00000013	<0.0000011	0.00002448	<0.00000014	<0.00000009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives																			-						
Pentaerythritol Tetranitrate Herbicides	mg/kg				<0.38	<0.35	<0.3	<0.35	<0.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP	mg/kg	63 {N}	820 (N)		NA	NA	0.0078 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	mg/kg	78 (N)	1,000 {N}		NA	NA NA	0.0302 J	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
Dalapon MCPP	mg/kg mg/kg	230 {N} 7.8 {N}	3,100 {N} 100 {N}		NA NA	NA NA	<1.01 <101	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Organochlorine Pesticides	mg/ng	7 .5 YIV	100 fial		NA	INC	-101	INC	INC	1 14/5	140	нд	140	14/7	INC	ING	INC.	14/7	14/7	нд	14/5	147	INC	140	14/7
4,4'-DDD	mg/kg	2.7 (C)	12 {C}		NA	NA	0.0019 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA	NA	<0.00676 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs																									
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		0.0052	<0.002	0.023	<0.002	<0.0022	NA	<0.0091	<0.0094	<0.0085	NA											
Acenaphthene	mg/kg	470 (N)	6,100 {N} 3,100 {N}		0.0019 B 0.0019 J	<0.002 <0.002	0.025 0.0039	<0.002 <0.002	<0.0022 <0.0022	NA NA	<0.0091 <0.0091	<0.0094 <0.0094	<0.0085 <0.0085	NA NA											
Acenaphthylene Anthracene	mg/kg mg/kg	230 {N} 2.300 {N}	3, 100 {N}		0.0019 J	<0.002	0.0039	<0.002	<0.0022	NA NA	0.0091	0.052	<0.0085	NA NA											
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.0071	<0.002	0.97	<0.002	<0.0022	NA	0.089	0.42	0.021 J	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.006	<0.002	1.1	<0.002	<0.0022	NA	0.091	0.51	0.029 J	NA											
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.013	<0.002	1.8	<0.002	<0.0022	NA	0.17	0.64	0.046 J	NA											
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		0.0038	<0.002 <0.002	0.96 0.53	<0.002 <0.002	<0.0022 <0.0022	NA NA	0.074 0.044	0.27 0.17	0.027 0.017	NA NA											
Chrysene	mg/kg mg/kg	2.2 (C) 22 (C)	390 (C)		0.0033	<0.002	0.99	<0.002	<0.0022	NA NA	0.11	0.33	0.017	NA NA											
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		0.0013 J	<0.002	0.22	<0.002	<0.0022	NA	<0.0091	0.08	<0.0085	NA											
Fluoranthene	mg/kg	310 (N)	4,100 {N}		0.0096	<0.002	1.6	<0.002	<0.0022	NA	0.23	0.61	0.048	NA											
Fluorene	mg/kg	310 {N}	4,100 {N}		0.0014 J	<0.002	0.027	<0.002	<0.0022	NA	<0.0091	<0.0094	<0.0085	NA											
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg	0.22 {C}	3.9 {C} 2,000 {N}		0.0047 0.0069 B	<0.002 <0.002	1.1 0.018	<0.002 <0.002	<0.0022 <0.0022	NA NA	0.069 <0.0091	0.27 <0.0094	0.025 <0.0085	NA NA											
Phenanthrene	mg/kg mg/kg	160 {N} 230 {N}	3,100 {N}		0.0039	<0.002	0.69	<0.002	<0.0022	NA NA	0.087	0.2	0.0065	NA NA											
Pyrene	mg/kg	230 (N)	3,100 (N)		0.01 J	<0.002 J	1.6	<0.002 J	<0.0022 J	NA NA	0.14 J	0.39	0.028 J	NA NA	NA NA										
PCBs																									
Aroclor-1254	mg/kg	0.16 {C}	1.4 {C}		<0.040	<0.030	<0.030	<0.030	<0.040	<0.030	<0.045	<0.047	<0.042	<0.043	<0.044	<0.041	<0.044	<0.050	<0.040	<0.044	<0.045	<0.042	<0.041	<0.044	<0.040
Volatile Organics																									
Acetone Carbon Disulfide		7,000 {N} 780 {N}	92,000 {N} 10,000 {N}		<0.0063 <0.0063	<0.0053 <0.0053	<0.0046 <0.0046	<0.0053 0.00039 B	<0.0072 <0.0072	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
d-Limonene	mg/kg mg/kg	7 OU {IN}	10,000 {N}		<0.0063 NA	<0.0053 NA	<0.0046 NA	0.00039 B NA	<0.0072 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methylene Chloride	mg/kg	85 {C}	380 {C}		<0.0063	<0.0053	<0.0046	<0.0053	<0.0072	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA
p-Isopropyltoluene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	630 {N}	8,200 {N}		<0.0063	<0.0053	<0.0046	<0.0053	<0.0072	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics	mall:=	24 (N)	440 (NI)		~0.00	~0.00	0.046	>0.00	<0.00	I NIA	NIA	NI A	NIA.	NIA	NIA	NIA	NIA	NIA	NIA	NI A	NIA	NIA	NIA	NIA	NI A
2-Methylnaphthalene Acenaphthene	mg/kg mg/kg		410 {N} 6,100 {N}		<0.22 <0.22	<0.20 <0.20	0.016 J 0.015 J	<0.20 <0.20	<0.22 <0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene		2,300 {N}	31,000 {N}		<0.22	<0.20	0.015 J	<0.20	<0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene	mg/kg		3.9 {C}		<0.22	<0.20	0.32	<0.20	<0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		<0.22	<0.20	0.40	<0.20	<0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		<0.22	<0.20	0.65	<0.20	<0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	2.2 {C}	39 {C}		<0.22 <0.22	<0.20 <0.20	0.28 0.15 J	<0.20 <0.20	<0.22 <0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	mg/kg		200 (C)		<0.22	<0.20	0.15 J	<0.20	<0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Butylbenzylphthalate	mg/kg		20,000 {N}		<0.22	<0.20	<0.17	<0.20	<0.22	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Carbazole	mg/kg	32 {C}	140 {C}		<0.22 J	<0.20 J	0.038 J	<0.20 J	<0.22 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 {C}		<0.22	<0.20	0.32	<0.20	<0.22	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
Dibenzo(a,h)anthracene Dibenzofuran	mg/kg	0.022 {C} 7.8 {N}	0.39 {C} 100 {N}		<0.22 <0.22	<0.20 <0.20	0.076 J 0.014 J	<0.20 <0.20	<0.22 <0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Butylphthalate	mg/kg mg/kg	7.8 (N) 780 (N)	10,000 {N}		<0.22	<0.20	<0.17	<0.20	<0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-Octylphthalate	mg/kg				<0.22	<0.20	<0.17	<0.20	<0.22	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Fluoranthene	mg/kg	310 {N}	4,100 {N}		<0.22	<0.20	0.44	<0.20	<0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg		4,100 {N}		<0.22	<0.20	0.014 J	<0.20	<0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C} 2,000 {N}		<0.22 <0.22	<0.20 <0.20	0.32 <0.17	<0.20 <0.20	<0.22 <0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene N-Nitrosodiphenylamine	mg/kg mg/kg	160 {N} 130 {C}	2,000 {N} 580 {C}		<0.22	<0.20	<0.17	<0.20	<0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		<0.22	<0.20	0.25	<0.20	<0.22	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				
Pyrene	mg/kg		3,100 {N}		<0.22	<0.20	0.38 J	<0.20	<0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
See footnotes on last page.																									

See footnotes on last page.

G:\Prigts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables 3-16 through 3-18.WBG Tables-reformatted

	1			I =		1	1	1	1	1	1	1	1	1	1	1		1	1	1	1		1		
Sample Name:		Adjusted	Adjusted	Facility-Wide	WBGSB24B	WBGSB24C	WBGSB25A	WBGSB25B	WBGSB25C	WBGTR01	WBGSB26A	WBGSB27A	WBGSB28A	WBGSB29A	WBGSB30A	WBGSB31A	WBGSB32A	WBGSB33A	WBGSB34A	WBGSB35A	WBGSB36A	WBGSB37A	WBGSB38A	WBGSB39A	WBGSB40A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	2 - 4	6 - 8	0 - 0.5	2 - 4	6 - 8	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/19/02	06/19/02	06/18/02	06/19/02	06/19/02	06/18/02	07/16/04	07/16/04	07/16/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/20/04	07/20/04	07/20/04	07/19/04	07/19/04	07/19/04
Inorganics																									
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	19,300	9,600	17,500	15,300	31,600	NA	15,700	19,000	21,800	40,000	34,300	24,200	28,500	20,100	30,400	33,700	39,000	26,300	24,400	16,500	15,700
Antimony	mg/kg	3.13 {N}	40.88 {N}		<0.630 L	0.530 L	0.850 L	<0.590 L	<0.650 L	NA	<0.360 L	1.60 B	0.610 B	0.830 B	0.610 B	0.850 B	0.470 B	0.760 B	0.520 B	< 0.300	0.800 B	0.530 J	0.420 J	< 0.330	0.490 J
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	6.73 L	6.41 L	6.38 L	5.03 L	10.0 L	NA	8.30	9.50	9.40	10.8	13.3	9.40	9.80	7.90	10.8	8.60	15.8	10.2	9.00	6.10	5.60
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	42.9	29.8	99.0	84.0	62.2	NA	45.5	128	81.7	72.9	55.8	34.1	74.1	53.8	54.9	83.5	56.4	34.4	43.5	72.5	39.2
Beryllium	mg/kg	15.6 {N}	204.4 (N)	1.02 {N}	0.780 J	0.730 J	0.600 L	< 0.590	3.25 J	NA	0.830 J	0.920 J	1.30 J	2.80	2.90	0.630	1.40	1.30	1.60	2.30	3.10	1.40	1.10	0.870	0.740
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.120	<0.110	0.300	<0.110	< 0.130	NA	<0.0380	0.380 J	0.0840 J	0.420 J	0.370 J	0.200 J	0.400 J	0.300 J	0.390 J	0.0820 B	0.590 J	<0.0310	< 0.0320	0.0780 B	< 0.0330
Calcium	mg/kg				1,060	538	4,900	885	1,880	NA	1,650	8,840	3,980	5,740 J	4,330 J	1,230 J	4,030 J	5,320 J	3,390 J	7,550	7,950 J	3,130	2,920	2,400	1,150
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	25.9 L	21.9 L	69.6	20.8 L	62.3 L	NA	26.7	44.8	45.2	59.5	54.8	35.6	43.4	32.7	49.6	51.8 J	58.5	39.7 J	37.4 J	24.2 J	25.0 J
Cobalt	mg/kg			72.3	14.2	19.8	11.7 J	14.7	8.28	NA	14.5	10.2	9.80	21.1	30.6	10.8	13.6	11.1	16.5	16.6	30.6	17.4	13.6	7.50	16.0
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	31.7	4.37	52.8	9.52	23.4	NA	15.6	47.1	28.6	31.2	28.3	17.5	21.0	20.5	22.6	24.0	31.4	25.2	19.3	16.2	11.7
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	31,700 J	16,600 J	24,000	20,700 J	27,800 J	NA	24,900	24,600	28,300	37,800	37,000	30,900	31,100	21,600	33,300	30,000	41,400	32,000	29,200	17,600	18,300
Lead	mg/kg	400	750	26.8	23.3	33.1	259	19.3	30.5	NA	32.5	279	114	33.5	41.0	19.6	31.8	43.1	85.6	54.9	45.8	29.1	27.8	38.0	28.7
Magnesium	mg/kg				1,150	1,300	4,300	1,050	13,400	NA	1,220 K	3,390	3,140	9,210	4,710	752	6,230	3,010	4,230	12,200	6,750	2,750	2,800	1,530	1,780
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	134	344	323	309	71.1	NA	637	428	251	280	283	180	364	224	212	233	282	154	166	292	449
Mercury	mg/kg	2.35	30.66	0.13	0.0600	<0.0500	0.0400 J	0.0700	0.100	NA	0.0610	0.0700	0.0670	0.120	0.130	0.0800	0.0970	0.0850	0.0920	0.110	0.130	0.100	0.0760 B	0.0360 B	0.0410 B
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	17.5	5.94	18.9	10.2	33.3	NA	14.9	17.3	20.7	35.2	33.6	12.1	22.6	16.6	24.3	29.6	36.8	21.1	19.2	12.3	12.9
Potassium	mg/kg				1,240	592	1,070	565	2,780	NA	702	1,120	1,200	2,910	2,050	792	1,620	1,200	1,690	2,530	2,820	1,600	1,470	612	764
Selenium	mg/kg	39.1 {N}	511 {N}		<1.27 L	<1.18 L	0.500 L	<1.18 L	<1.32 L	NA	1.10 B	0.750 B	0.860 B	0.830 B	1.00 B	0.740 B	<0.660	<0.740	0.730 B	<0.580	0.850 B	0.780 B	< 0.590	< 0.640	<0.600
Silver	mg/kg	39.1 {N}	511 {N}		<1.27	<1.18	<1.01	<1.18	<1.32	NA	<0.140	<0.140	<0.130	<0.240	<0.280	<0.120	<0.130	<0.150	<0.120	<0.120	<0.280	<0.120	<0.120	<0.130	<0.120
Sodium	mg/kg				18.0 B	9.70 B	28.3	14.0 B	18.0 B	NA	62.1 B	136 B	84.5 B	72.0 B	72.5 B	75.8 B	80.7 B	101 B	70.6 B	51.2 J	82.7 B	54.2 J	46.0 B	58.4 B	75.8 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.190 J	0.120 J	0.170 J	0.170 J	0.220 J	NA	<0.420	<0.430	<0.380	<0.370	<0.420	< 0.360	<0.400	<0.450	< 0.350	< 0.360	<0.420	< 0.350	<0.360	<0.390	< 0.360
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 (N)	41.0 L	35.6 L	42.9	33.6 L	56.5 L	NA	46.1	48.0	53.9	80.9	74.2	63.5	63.0	46.1	66.5	62.1	84.7	63.4	58.4	37.5	43.0
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 (N)	17.5 J	11.8 J	449	24.0 J	35.1 J	NA	43.6	459	202	55.9	51.6	28.7	51.9	56.3	48.7	45.5	52.0	41.0	37.2	67.5	34.1
Inorganics - TCLP																									
Arsenic	μg/L	5,000*			NA																				
Barium	μg/L	100,000*			NA																				
Cadmium	μg/L	1,000*			NA																				
Chromium	μg/L	5,000*			NA																				
Lead	μg/L	5,000*			NA																				
Mercury	μg/L	200*			NA																				
Selenium	μg/L	1,000*			NA																				
Silver	μg/L	5,000*			NA																				
Miscellaneous																									
Percent Solids	%				NA	NA	NA	NA	NA	NA	73	71	79	78	76	81	76	67	83	75	74	79	82	76	83
pH	pH Units				NA																				
Total Organic Carbon	mg/kg				NA																				

See footnotes on last page

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables\3-16 through 3-18.WBG Tables-reformatted

Page 12 of 14

Sample Name:	:	Adjusted	Adjusted	Facility-Wide	WBGSB41A	WBGSB42A	WBGSB43A	WBGSB43B	WBGSB44A	WBGSB44B	WBGSB45A	WBGSB45B	WBGSB46C	WBGSB47C	WBGSB48C	WBGSB49B	WBGSB50B	WBGSB51B	WBGSB52B	WBGSB53A
Sample Depth (ft):	:	Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	4 - 5	0 - 0.5	1 - 2	0 - 0.5	4 - 5	4 - 5	5 - 6	4 - 5	1 - 2	3 - 4	3 - 4	3 - 4	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	09/14/04
Dioxin/Furan 1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA.
1,2,3,7,8,9-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	mg/kg	0.0000043 {C	0.000019 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF Total HpCDDs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HpCDFs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HxCDDs	mg/kg				NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA
Total HxCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PeCDDs	mg/kg				NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
Total PeCDFs Total TCDDs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total TCDDs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Explosives		1																		
Pentaerythritol Tetranitrate	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides																				
2,4,5-TP	mg/kg	63 (N)	820 (N)		NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
2,4-D Dalapon	mg/kg mg/kg	78 {N} 230 {N}	1,000 {N} 3,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MCPP	mg/kg	7.8 {N}	3, 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Organochlorine Pesticides	;	- ()	,			ı					ı		ı		ı				ı	
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs		0.4.00	14000	1																
2-Methylnaphthalene Acenaphthene	mg/kg mg/kg	31 {N} 470 {N}	410 {N} 6,100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthylene	mg/kg	230 (N)	3,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg	22 {C}	390 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	310 {N} 0.22 {C}	4,100 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg	160 (N)	2,000 {N}		NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs Aroclor-1254	mg/kg	0.16 (C)	1.4 {C}		<0.040	<0.043	<0.041	<0.043	<0.040	<0.037	<0.040	<0.042	<0.044	<0.043	<0.043	<0.043	<0.042	<0.041	<0.041	NA
Volatile Organics	ilig/Kg	0.10 (C)	1.4 (0)		~U.U 4 U	~ 0.043	~U.U4 I	~U.U43	~U.U 4 U	~U.U3/	~U.U 4 U	~ 0.04∠	~U.U44	<u>~0.043</u>	~U.U43	<u>~0.043</u>	~U.U4Z	~U.U4 I	>U.U4 I	INA
Acetone	mg/kg	7,000 {N}	92,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	mg/kg	780 (N)	10,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
d-Limonene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride p-Isopropyltoluene	mg/kg mg/kg	85 {C}	380 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	mg/kg	630 {N}	8,200 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Semivolatile Organics	. 33																			
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene Benzo(a)anthracene	mg/kg	2,300 {N} 0.22 {C}	31,000 {N} 3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 (C)	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	mg/kg	2.2 {C}	39 (C)		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	46 {C} 1,600 {N}	200 {C} 20,000 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate					NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	mg/kg		140 (C)					NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
bis(2-Ethylhexyl)phthalate		32 {C} 22 {C}	140 {C} 390 {C}		NA	NA	NA	1473									147 (INA	19/5	
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg	32 {C} 22 {C} 0.022 {C}	390 {C} 0.39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran	mg/kg mg/kg mg/kg mg/kg mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N}	390 {C} 0.39 {C} 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N}	390 {C} 0.39 {C} 100 {N} 10,000 {N}		NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N}	390 {C} 0.39 {C} 100 {N}		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate Di-n-Cotylphthalate	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N}	390 {C} 0.39 {C} 100 {N} 10,000 {N}		NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate Di-n-Octylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N} 310 {N} 310 {N} 0.22 {C}	390 {C} 0.39 {C} 100 {N} 10,000 {N} 4,100 {N} 4,100 {N} 3.9 {C}		NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate Di-n-Octylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N} 310 {N} 310 {N} 0.22 {C} 160 {N}	390 {C} 0.39 {C} 100 {N} 10,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N}		NA	NA	NA	NA	NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA	NA	NA	NA NA NA NA NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate Di-n-Octylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene N-Nitrosodiphenylamine	mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N} 310 {N} 310 {N} 0.22 {C} 160 {N} 130 {C}	390 {C} 0.39 {C} 100 {N} 10,000 {N} 4,100 {N} 4,100 {N} 3,9 {C} 2,000 {N}		NA N	NA N	NA N	NA N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA NA NA NA NA NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-Butylphthalate Di-n-Octylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg	32 {C} 22 {C} 0.022 {C} 7.8 {N} 780 {N} 310 {N} 310 {N} 0.22 {C} 160 {N}	390 {C} 0.39 {C} 100 {N} 10,000 {N} 4,100 {N} 4,100 {N} 3.9 {C} 2,000 {N}		NA	NA	NA	NA	NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA	NA	NA	NA NA NA NA NA NA

See footnotes on last page.

		A 11 -4- 1	1 4 10	F:::4 \\\\:d-	l		l					T		l	·		l		T	
Sample Name:		Adjusted	Adjusted	Facility-Wide	WBGSB41A	WBGSB42A	WBGSB43A	WBGSB43B	WBGSB44A	WBGSB44B	WBGSB45A	WBGSB45B	WBGSB46C	WBGSB47C	WBGSB48C	WBGSB49B	WBGSB50B	WBGSB51B	WBGSB52B	WBGSB53A
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	4 - 5	0 - 0.5	1 - 2	0 - 0.5	4 - 5	4 - 5	5 - 6	4 - 5	1 - 2	3 - 4	3 - 4	3 - 4	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	07/19/04	09/14/04
Inorganics																				
Aluminum	mg/kg	7,800 {N}	100,000 {N}	40,041	27,000	29,800	17,500	31,700	23,600	13,200	19,600	31,900	31,000	53,700	31,600	23,800	38,200	29,200	26,700	24,200
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.360 J	<0.320	0.530 L	<0.340	0.320 J	0.330 B	0.560 J	0.600 B	< 0.340	0.950 B	1.10 B	0.390 B	<0.600	0.520 B	0.410 B	0.520 B
Arsenic	mg/kg	0.43 {C}	1.91 {C}	15.8 {C}	7.20	12.9	4.50	12.6	9.80	5.30	8.70	12.7	5.90	10.1	10.3	9.90	12.8	8.00	8.70	10.3
Barium	mg/kg	1,564 {N}	20,440 (N)	209 (N)	51.6	43.0	90.0	20.6	31.0	35.1	33.6	39.6	58.6	181	95.6	27.0	28.7	62.0	88.1	32.8
Beryllium	mg/kg	15.6 {N}	204.4 {N}	1.02 {N}	1.60	1.90	1.30	1.10	0.890	0.550	0.810	1.40	2.70	3.30	1.40	0.880	0.890	1.40	1.80	0.990
Cadmium	mg/kg	3.9 {N}	51.1 {N}	0.69 {N}	<0.0290	< 0.0340	0.0660 B	< 0.0370	< 0.0330	<0.0290	<0.0310	< 0.0350	< 0.0360	0.0900 B	0.0740 B	<0.0300	< 0.0640	0.240 B	0.300 J	0.140 J
Calcium	mg/kg				1,600	3,840	3,860	1,060	1,220	1,460	1,020	1,310	1,800	5,180	7,160	733	1,490	5,150	14,700	2,280
Chromium	mg/kg	23.5 {N}	306.6 (N)	65.3 {N}	46.8 J	46.1 J	102 J	49.4 J	43.9 J	21.5 J	33.2 J	44.8 J	75.3 J	80.6 J	57.3 J	35.6 J	52.2	40.3	62.8	38.4
Cobalt	mg/kg			72.3	13.3	25.0	11.0	20.2	13.4	7.20	11.5	16.5	23.2	12.9	12.5	7.20	18.0	17.9	9.30	10.3
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	19.3	24.6	12.9	25.8	23.1	9.50	16.6	24.6	40.9	35.5	258	18.1	26.2	19.0	18.7	19.6
Iron	mg/kg	2,346 {N}	30,660 {N}	50,962 {N}	32,400	37,100	19,300	47,400	40,600	19,500	28,200	44,800	52,100	47,700	38,800	35,000	51,500	31,100	23,700	33,500
Lead	mg/kg	400	750	26.8	19.3	35.5	19.4	27.2	59.6	19.5	29.1	24.3	17.4	19.8	163	18.6	18.9	17.0	20.7	33.3
Magnesium	mg/kg				4,850	3,490	5,340	1,190	1,260	583	865	1,350	3,270	38,500	7,490	758	1,010	3,880	16,500	1,720 K
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	193	238	416	146	158	171	184	203	489	294	230	127	262	145	220	136
Mercury	mg/kg	2.35	30.66	0.13	0.0530 B	0.110 B	0.0320 B	0.110 B	0.0640 B	0.0410 B	0.0590 B	0.0860 B	0.0500 B	0.0330 B	0.0300 B	0.110 B	0.0450	0.0580	0.0650	0.0650
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	24.1	27.1	20.4	22.7	16.4	8.00	13.3	26.8	38.2	47.5	26.7	16.1	21.1	23.0	23.7	16.6
Potassium	mg/kg				1,270	1,600	929 K	1,060	1,030	602	745	1,160	1,020	2,230	1,380	990	1,130	1,480	1,290	1,170 K
Selenium	mg/kg	39.1 {N}	511 {N}		0.740 B	<0.610	<0.560	1.40 J	<0.590	<0.520	0.740 B	1.10 J	<0.670	< 0.650	0.610 J	0.840 J	<1.20	0.740 J	<0.600	0.830 J
Silver	mg/kg	39.1 {N}	511 {N}		<0.110	<0.250	<0.110	<0.140	<0.240	<0.110	<0.120	<0.130	<1.40 L	<0.130	<0.120	<0.110	<0.120 L	<0.130 L	<0.120 L	<0.120
Sodium	mg/kg				43.0 B	47.9 B	58.1 B	48.6 B	58.9 B	55.6 B	57.2 B	51.4 B	<33.8	77.6 B	99.8 B	53.9 B	88.4 B	81.6 B	84.4 B	66.5 B
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	<0.320	<0.370	<0.340	<0.410	<0.360	<0.320	< 0.350	<0.390	<0.410	<0.400	<0.360	<0.340	<0.710	<0.380	<0.360	<0.370
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	65.6	73.1	46.9	88.5	67.5	38.7	56.5	83.4	96.0	99.8	73.3	68.5	98.6	63.4	56.8	65.6
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	32.1	41.8	41.9	43.8	68.6	61.6	42.7	38.2	32.0	67.1	315	31.3	37.2	32.4	39.6	35.9
Inorganics - TCLP														-						
Arsenic	μg/L	5,000*			NA															
Barium	μg/L	100,000*			NA															
Cadmium	μg/L	1,000*			NA															
Chromium	μg/L	5,000*			NA															
Lead	μg/L	5,000*			NA															
Mercury	μg/L	200*			NA															
Selenium	μg/L	1,000*			NA															
Silver	μg/L	5,000*			NA															
Miscellaneous																				_
Percent Solids	%				84	77	82	78	83	89	84	80	76	77	79	78	79	82	82	83
pH	pH Units				NA															
Total Organic Carbon	mg/kg				NA															

RBC Risk Based Concentration.
{C} Carcinogen.
{N} Noncarcinogen.
B (Inorganics) Constituent oncentration quantitified as estimated.
B (Organics) Constituent concentration quantitified as estimated.
B (Organics) Constituent oncentration plantified as estimated.
K Estimated concentration bias high.
L Estimated concentration bias high.
L Estimated concentration bias low.
R Constituent concentration rejected.
NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).
10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).
Inorganics constituent concentration exceeds Background Point Estimate.
TCLP Standard

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

										,	,		i, Radford, Virginia								
Sample Name:		Adjusted	Adjusted	Facility-Wide	SD-01	SD-02	WBGSD1	WBGSD2	WBGSD3	WBGSD4	WBGSD5	WBGSD5-2	WBGSD5-2R	WBGSD6	WBGSD07	WBGSD08	WBGSD09	WBGSD10	WBGSD11	WBGSD12	WBGSD13
Sample Depth (ft):		Soil RBC	Soil RBC	Background			0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/04/97	06/04/97	07/16/98	07/16/98	07/16/98	05/27/99	05/27/99	06/16/99	06/16/99	05/27/99	06/26/02	06/25/02	06/25/02	06/26/02	06/27/02	06/26/02	06/26/02
Dioxin/Furan																					
1,2,3,4,6,7,8-HpCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00001793	0.00000211 J	0.00002099	0.00002501	0.00007199	0.00003719	NA
1,2,3,4,6,7,8-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00000094	<0.0000017	0.00000285	0.0000053	0.0000063	0.00000177	NA
1,2,3,4,7,8,9-HpCDF	mg/kg				NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	<0.00000025	<0.00000023	0.00000026	0.00000054 J	<0.00000033	<0.00000024	NA
1,2,3,4,7,8-HxCDD	mg/kg				NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	<0.00000034	<0.00000032	<0.0000003	<0.00000026	0.00000103	0.00000071	NA NA
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0000002 <0.00000027	<0.00000014 <0.00000026	0.00000092 J <0.00000024	0.00000168 0.00000148	<0.0000002 0.00000204 J	<0.00000019 0.00000099 J	NA NA
1,2,3,6,7,8-HxCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000027	<0.00000028	<0.00000024	0.00000148 0.00000173 J	<0.00000204 3	<0.0000099 3	NA NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000019	<0.00000014	0.00000014	0.000001733	0.0000039	0.00000013	NA NA
2.3.4.6.7.8-HxCDF	mg/kg				NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000023	<0.00000018	<0.00000018	0.00000094 J	<0.0000023	<0.000001110	NA NA
2,3,4,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00000022	<0.00000014	<0.00000013	0.00000141	<0.00000021	<0.0000019	NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00000035	<0.0000014	<0.0000015	0.00000283 J	<0.000003	<0.00000028	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0007224	0.0001412	0.001106	0.001119	0.003422	0.001753	NA
OCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00000244 J	<0.0000003 J	0.00000662 J	0.00001139	0.00001515	0.00000398	NA
Total HpCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00004226	0.00000315	0.00004811	0.00005053	0.0001538	0.00008485	NA
Total HpCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00000265	<0.0000017	0.00000781	0.00001135	0.00001837	0.00000177	NA
Total HxCDDs	mg/kg				NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	0.00000236	<0.00000026	0.00000397	0.00001213	0.00001657	0.00000876	NA
Total HxCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00000187	<0.00000014	0.00000258	0.00000654	0.00000514	0.00000154	NA NA
Total PeCDDs Total PeCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000037 <0.00000021	<0.00000022 <0.00000012	<0.00000025 <0.00000012	<0.00000029 0.00000779	0.00000055 0.00000965	<0.00000023 0.00000088	NA NA
Total TCDDs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000021	<0.00000012	<0.00000012	0.00000779	<0.00000965	<0.00000088	NA NA
Total TCDFs	mg/kg				NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00000032	<0.00000024	<0.00000022	0.00003442	<0.0000003	<0.00000027	NA NA
Explosives	9/9										1				10.0000000	10.0000001.	10.00000010	0.000001.12	10.000000	10.00000020	
1.3.5-Trinitrobenzene	mg/kg	230 (N)	3,100 {N}		NA	NA	< 0.25	< 0.25	< 0.25	NA	NA	NA	NA	NA	NA	<0.1	<0.2	<0.2	<0.2	0.41	NA
Nitroglycerine	mg/kg	0.78 {N}	10 (N)		NA	NA	<1.2	<1.2	<1.2	NA	NA	NA	NA	NA	NA	<0.46	<1.03	<1.07	<1.41	0.96 J	NA
Herbicides	0 0	,						l .			I.					L	J.		Į.	<u>.</u>	
2,4,5-T	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0153	NA	<0.0178	NA	NA	< 0.0379
2,4-D	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.385	NA	< 0.0356	NA	NA	<0.0758
Dicamba	mg/kg	230 {N}	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0322 B	NA	<0.0356	NA	NA	<0.0758
MCPP	mg/kg	7.8 {N}	100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.56 B	NA	<17.8	NA	NA	<37.9
Organochlorine Pesticides															1						
4,4'-DDD	mg/kg	2.7 {C}	12 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	0.00033 J	NA	0.00099 J	NA	NA	0.00152 J
4,4'-DDE	mg/kg	1.9 {C}	8.4 (C)		ND	R	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	0.00308	NA	0.0027 B	NA	NA NA	0.00203 B
4,4'-DDT	mg/kg	1.9 {C}	8.4 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00102 0.00021 J	NA NA	0.0119 <0.00119	NA NA	NA NA	<0.00253
Alpha-Chlordane Delta-BHC	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.000213 0.00095 B	NA NA	<0.00119	NA NA	NA NA	<0.00253 <0.00253
Dieldrin	mg/kg	0.04 {C}	0.18 {C}		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00102	NA NA	0.00347	NA NA	NA NA	<0.00253
Endosulfan II	mg/kg				NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.00102	NA NA	0.00161	NA NA	NA NA	<0.00253
Endrin Aldehyde	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00102	NA	0.00169	NA	NA	<0.00253
Endrin Ketone	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.00102	NA	0.00224	NA	NA	< 0.00253
Gamma-Chlordane	mg/kg	-			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00102	NA	<0.00119	NA	NA	<0.00253
Methoxychlor	mg/kg	39 (N)	510 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.00102	NA	<0.00119	NA	NA	<0.00253
PAHs																					
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0022 B	<0.004	0.062	<0.003	<0.004	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0043	<0.004	0.31	<0.003	<0.004	NA	NA
Acenaphthylene	mg/kg	230 (N)	3,100 {N}		NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0043	<0.004	0.021	<0.003	<0.004	NA NA	NA NA
Anthracene Benzo(a)anthracene	mg/kg	2,300 {N}			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0048	<0.004	0.83	<0.003 <0.003	<0.004 <0.004	NA NA	NA NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.22 {C} 0.022 {C}	3.9 {C} 0.39 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.009 0.0057	<0.004 <0.004	3.7	<0.003	<0.004	NA NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg	0.022 {C} 0.22 {C}	3.9 {C}		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.0057	<0.004	4.6	<0.003	<0.004	NA NA	NA NA
Benzo(g,h,i)perylene	mg/kg				NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.005 J	<0.004	2.1	<0.003	<0.004	NA NA	NA NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0033 J	<0.004	1.4	<0.003	<0.004	NA	NA
Chrysene	mg/kg	22 (C)	390 (C)		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	0.0077	<0.004	4.1	<0.003	<0.004	NA NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0043	<0.004	0.56	<0.003	<0.004	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 (N)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.019	<0.004	4.9	<0.003	0.0026 J	NA	NA
Fluorene	mg/kg	310 {N}	4,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0027 J	<0.004	0.25 J	<0.003	<0.004	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0038 J	<0.004	1.6	<0.003	<0.004	NA	NA
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0017 B	<0.004	0.085	<0.003	<0.004	NA	NA
Phenanthrene	mg/kg	230 (N)	3,100 {N}		NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	0.014	<0.004	2.8	<0.003	<0.004	NA NA	NA NA
Pyrene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.015	<0.004	5	<0.003	0.0017 J	NA	NA
PCBs	-				1	1	N/A	N/A	NIA	NI A	NIA	NI A	NIA I	NIA.	1		ı		ī		
None Detected Volatile Organics							NA	NA	NA	NA	NA	NA	NA	NA							
	ma/ka	4 700 (NI)	61 000 (NI)		0.015	0.010	∠0.00 7 0	∠0.040	~0.010 ·	NIΛ	NΙΛ	NΙΛ	NIA	NΙΛ	0.17	<0.0077	<0.0086	<0.0089	0.090	0.10	<0.010
Z-Butanone Acetone	mg/kg mg/kg	4,700 {N} 7,000 {N}	61,000 {N} 92,000 {N}		0.015 0.056 B	0.019 0.078 B	<0.0070 0.0030 J	<0.010 <0.010	<0.010 0.020 J	NA NA	NA NA	NA NA	NA NA	NA NA	0.17 0.23 B	<0.0077 <0.0077 J	<0.0086 <0.0086 J	<0.0089 0.048 B	0.090 0.14 B	0.18 0.20 B	<0.019 0.10 B
Carbon Disulfide	mg/kg	7,000 {N}	10,000 {N}		0.036 B	NA	<0.0030 3	<0.010	<0.020 3	NA NA	NA NA	NA NA	NA NA	NA NA	<0.013	<0.0077	<0.0086	0.046 B 0.0012 B	0.14 B 0.0013 B	<0.011	0.10 B
Methylene Chloride	mg/kg	85 (C)	380 {C}		0.0020 B	0.0020 B	<0.0070	<0.0030	<0.0030	NA NA	NA NA	NA NA	NA NA	NA NA	<0.013	<0.0077	<0.0086	<0.0089	<0.012	<0.011	<0.019
Toluene	mg/kg	630 (N)	8,200 (N)		0.10	0.010 J	0.0040	0.040	0.010	NA	NA	NA	NA NA	NA NA	<0.013	<0.0077	<0.0086	0.0078 J	0.61 J	<0.011	<0.019
See footnotes on last page.	و٠٠٠ق	()	-, (,										1		1					1	

				I = I		ı	ı	1	1	1	,		· · · · ·		1		1	T		ı	
Sample Name:		Adjusted	Adjusted	Facility-Wide	SD-01	SD-02	WBGSD1	WBGSD2	WBGSD3	WBGSD4	WBGSD5	WBGSD5-2	WBGSD5-2R	WBGSD6	WBGSD07	WBGSD08	WBGSD09	WBGSD10	WBGSD11	WBGSD12	WBGSD13
Sample Depth (ft):		Soil RBC	Soil RBC	Background	00/04/07	00/04/07	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected: Semivolatile Organics	Units	(Residential)	(Industrial)	Point	06/04/97	06/04/97	07/16/98	07/16/98	07/16/98	05/27/99	05/27/99	06/16/99	06/16/99	05/27/99	06/26/02	06/25/02	06/25/02	06/26/02	06/27/02	06/26/02	06/26/02
1,2,4-Trichlorobenzene	mg/kg	78 {N}	1,000 {N}		NA	NA	NA	NA	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	<0.43	<0.26	0.012 J	<0.30	<0.40	<0.36	<0.64
1.4-Dichlorobenzene	mg/kg	27 (C)	1,000 {N}		NA NA	NA NA	NA NA	NA NA	NA	<0.69	<1.1	NA NA	NA NA	<0.93 [<0.85]	<0.43	<0.26	0.012 J	<0.30	<0.40	<0.36	<0.64
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA NA	NA NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA NA	NA NA	<0.93 [<0.85]	0.056 J	<0.26	0.012 J	<0.30	<0.40	<0.36	<0.64
4-Methylphenol	mg/kg	39 {N}	510 (N)		0.50 J	0.20 J	<0.42	2.2	<0.94	<0.69	<1.1	NA NA	NA NA	<0.93 [<0.85]	<0.43	<0.26 L	<0.29 L	<0.30	<0.40	<0.36	<0.64
Acenaphthene	mg/kg	470 (N)	6,100 {N}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.16 J	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Anthracene	mg/kg	2,300 {N}	31,000 {N}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.28 J	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.090 J	0.10 J	<0.42	<0.92	<0.94	< 0.69	<1.1	NA	NA	<0.93 [<0.85]	0.39 J	<0.26	<0.29	<0.30	<0.40	0.053 J	<0.64
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.090 J	ND	<0.42	< 0.92	< 0.94	< 0.69	<1.1	NA	NA	<0.93 [<0.85]	0.34 J	<0.26	<0.29	< 0.30	<0.40	0.054 J	<0.64
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 (C)		0.090 J	0.10 J	< 0.42	< 0.92	< 0.94	< 0.69	<1.1	NA	NA	<0.93 [<0.85]	0.42 J	<0.26	<0.29	< 0.30	<0.40	0.090 J	<0.64
Benzo(g,h,i)perylene	mg/kg				NA	NA	< 0.42	< 0.92	< 0.94	< 0.69	<1.1	NA	NA	<0.93 [<0.85]	0.20 J	<0.26	<0.29	< 0.30	<0.40	< 0.36	<0.64
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 {C}		0.090 J	0.10 J	<0.42	<0.92	<0.94	< 0.69	<1.1	NA	NA	<0.93 [<0.85]	0.15 J	<0.26	<0.29	< 0.30	<0.40	0.022 J	<0.64
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.060 J	0.18 J	<0.42	< 0.92	<0.94	< 0.69	0.15	NA	NA	<0.93 [<0.85]	< 0.43	<0.26	0.072 B	0.27 B	0.18 B	0.14 B	<0.64
Carbazole	mg/kg	32 {C}	140 (C)		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.21 J	<0.26 J	<0.29 J	<0.30 J	<0.40 J	<0.36 J	<0.64 J
Chrysene	mg/kg	22 {C}	390 (C)		0.090 J	0.13 J	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.39 J	<0.26	<0.29	< 0.30	<0.40	0.065 J	<0.64
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	<0.43	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Dibenzofuran	mg/kg	7.8 {N}	100 {N}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.10 J	<1.3	<1.4	<0.30	<0.40	<0.36	<0.64
Fluoranthene	mg/kg	310 {N}	4,100 {N}		0.30 J	0.20 J	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	1.1	<0.26	<0.29	<0.30	<0.40	0.13 J	<0.64
Fluorene	mg/kg	310 (N)	4,100 {N}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.18 J	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	0.24 J	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Naphthalene	mg/kg	160 {N}	2,000 {N}		NA NA	NA	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85] [<0.85]	0.27 J	<0.26	<0.29	<0.30	<0.40	<0.36	<0.64
Phenanthrene	mg/kg	230 {N}	3,100 {N}		0.12 J	0.15 J	<0.42	<0.92	<0.94	<0.69	<1.1	NA	NA	<0.93 [<0.85]	1.1	<0.26	<0.29	<0.30	<0.40	0.066 J	<0.64
Phenol	mg/kg	2,300 {N}	31,000 {N}		NA NA	NA 0.15 J	<0.42 <0.42	<0.92 <0.92	<0.94 <0.94	<0.69	<1.1 <1.1	NA NA	NA NA	<0.93 [<0.85] <0.93 [<0.85]	<0.43 0.90	<0.26	<0.29	<0.30	<0.40 <0.40	<0.36	<0.64 <0.64
Pyrene	mg/kg	230 (N)	3,100 {N}		0.20 J	0.15 J	<0.42	<0.92	<0.94	<0.69	<1.1	NA	INA	<0.93 [<0.85]	0.90	<0.26	<0.29	<0.30	<0.40	0.11 J	<0.04
Inorganics		7 000 (NI)	400 000 (NI)	40.044	7.700	0.440	00.400	00.000	0.700	0.700	5.700	40.000	NIA	0.040 [0.070]	7.440	29,200	40.700	18,700 J	44.000	40.000 1	5 400 L
Aluminum	mg/kg mg/kg	7,800 {N} 3.13 {N}	100,000 {N} 40.88 {N}	40,041	7,760 NA	8,140 NA	23,100 < 0.650	23,900 <1.30	6,720 <1.40	6,730 1.20 B	5,790 <1.80	13,800 <1.60	NA NA	6,010 [6,670] 1.70 B [<1.40]	7,110 J <1.25 L	<0.760 L	12,700 <0.850 L	3.10 L	14,600 J <1.18 L	19,300 J 0,740 B	5,400 J <1.89 L
Antimony	mg/kg	0.43 {C}	40.88 (N) 1.91 (C)	15.8 {C}	5.10	4.80	<0.650 10.3	10.0	2.90	3.30 B	5.30 B	3.90 B	NA NA	4.20 B [4.90 B]	1.44 J	<0.760 L 4.28 J	<0.850 L	5.10 L	1.74 J	0.740 B	30.4 J
Arsenic Barium	0 0	. ,	20,440 {N}	209 {N}	55.4	68.0 J	96.7 K	65.2 K	47.3 K	46.2 L	72.1 L	67.0 J	NA NA	50.1 L [50.6 J]	32.3	129	32.8	179	73.3	58.1	94.7
	mg/kg mg/kg	1,564 {N} 15.6 {N}	20,440 {N} 204.4 {N}	1.02 {N}	1.10	0.700	1.20 B	0.800 B	0.930 B	0.710 K	0.450 K	<0.330 L	NA NA	0.540 K [0.520]	32.3 1.20 J	1.67 B	0.850 B	2.27	73.3 0.760 J	0.740 J	0.560 J
Beryllium Cadmium	ma/ka	3.9 {N}	51.1 {N}	0.69 {N}	NA	0.700 NA	<0.130	<0.270	<0.280	<0.230	<0.360	<0.330 L <0.330	NA NA	<0.310 [<0.280]	0.190 J	<0.150	<0.170	2.27	0.760 J 0.140 B	<0.210	<0.370
Calcium	mg/kg	3.9 (IV)		0.09 (14)	9,190	6,110	2,450 B	30,400	11,800 B	15,700	70,800	56.300	NA NA	22,300 [23,000]	5,530	1,820 J	28,400 J	27.300	38,500	13,300	14,200
Chromium	mg/kg	23.5 {N}	306.6 {N}	65.3 {N}	29.9	20.6	40.0	46.8	26.0	21.9	39.3	96.9	NA NA	25.0 [24.9]	116	41.2 J	39.0 J	15.400	22.4	26.9	5.17 B
Cobalt	mg/kg	25.5 (14)		72.3	5.20	6.50	25.1 K	13.5 K	3.20 K	10.2	5.50	8.30 J	NA NA	7.30 [8.00]	7.10 J	16.1	8.79	84.1	6.50 J	8.30 J	9.60 J
Copper	mg/kg	312.9 {N}	4,088 {N}	53.5 {N}	28.3	85.1	15.4 B	18.8 B	15.0 B	18.6 K	24.4	19.8 K	NA NA	28.7 K [37.2 K]	6.36 J	17.4	8.48	188 J	12.8 J	11.9 J	13.7 J
Iron	mg/kg	5,500 (N)	72,000 (N)	50,962 {N}	18,500	14,200	36,800	33,900	8,530	15,300	12,700	20,100	NA NA	15,500 [16,100]	19,700	31,200	32,700	44.100	15,600	15,200	293,000
Lead	mg/kg	400	750	26.8	23.5	36.6	28.1	26.8	18.7	20.8 J	347 J	899	378	29.5 J [31.0 J]	22.5	16.3	44.6	109,000	29.4	28.5	5.61 B
Magnesium	mg/kg				3,260	1.480	2.140 B	4,010	1,800 B	1,780	3,170	4.350	NA NA	1,720 [1,830]	1,870	4,810	5.510	4.170	3.580	1.680	863
Manganese	mg/kg	156.4 {N}	2,044 {N}	2,543 {N}	112	245	721	165	25.9	1,700 121 K	155 K	144	NA NA	238 K [238 K]	43.6 B	479	339	295	126	264	2,310
Mercury	mg/kg	2.35	30.66	0.13	NA	NA.	<0.140	<0.270	<0.290	<0.230	<0.370	<0.320	NA NA	<0.300 [<0.270]	<0.120	0.0600 J	0.0300 J	0.0600 J	0.0500 J	0.0500 J	<0.180
Nickel	mg/kg	156.4 {N}	2,044 {N}	62.8 {N}	10.6	8.80	17.9 K	17.9 K	7.70 K	8.70 K	5.00 K	11.2 J	NA NA	7.00 K [7.60 K]	9.70 J	26.8	9.27	26.7	11.1	12.3	4.40 J
Potassium	mg/kg				435	479	1,350 J	2,210 J	376 B	448	568	1,110 J	NA	440 [498]	290 J	2,160	777	831	734	854	320 J
Selenium	mg/kg	39.1 {N}	511 {N}		NA	NA	<0.650 L	<1.30 L	<1.40 L	<0.930 L	<1.40 L	<1.30	NA	1.30 L [1.30 J]	<2.50 L	<1.53 L	<1.71 L	<1.78 L	1.30 J	0.810 J	<3.79 L
Silver	mg/kg	39.1 {N}	511 {N}		NA	NA	0.790 B	1.60 B	0.950 B	<0.230	< 0.360	<0.330	NA	<0.310 [<0.280]	<2.50 L	<1.53	<1.71	8.42 L	<2.35 L	<2.14 L	<3.79 L
Sodium	mg/kg	`			118	100	194 B	389 B	398 B	292 B	577 B	422 B	NA	516 B [456 B]	85.8	89.0 J	72.0 J	138	133	86.6	164
Thallium	mg/kg	0.548 {N}	7.154 {N}	2.11 {N}	0.200	0.200	1.70 B	<0.540 L	<0.560 L	<1.60	<2.50	<2.30	NA	<2.20 [<2.00]	0.130 J	0.220 B	0.100 B	0.260 J	0.170 J	0.210 J	0.740 J
Vanadium	mg/kg	7.8 {N}	102.2 {N}	108 {N}	30.7	27.2	66.2 K	67.3 K	20.1 K	33.0 K	23.6 K	34.8	NA	31.4 K [32.1 K]	40.6	59.3	52.2	106 J	29.6	32.4	14.0 J
Zinc	mg/kg	2,346 {N}	30,660 {N}	202 {N}	69.5	61.2	38.0 B	41.8 B	65.9 B	30.5 K	104 K	209	NA	42.0 K [44.3 K]	44.4 J	31.6 J	22.0 J	17,300	59.2 J	50.3 J	17.1 J
Miscellaneous																					
Percent Solids	%				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/kg		-		NA	NA	NA	NA	NA	21,842	39,276	NA	NA	37,330 [35,146]	53,700 K	NA	NA	28,600 K	24,200 K	NA	NA
-				•		•	•			•				_			•				

See footnotes on last page.

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

Table 3-17
Historical Sediment Sampling Results, Western Burning Ground
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

	1					ı	ı		1	1	ı	ı			1	,
Sample Name:		Adjusted	Adjusted	Facility-Wide	WBGSD14	WBGSD15	WBGSD16	WBGSD17	WBGSD18	WBGSD19	WBGSD20	WBGSD21	WBGSD22	WBGSD23	WBGSD24	WBGSD25
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/25/02	06/27/02	07/16/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	09/14/04	09/14/04	09/14/04
Dioxin/Furan																
1,2,3,4,6,7,8-HpCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-продг 1,2,3,4,7,8-HxCDD	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDF	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HxCDD	mg/kg				NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1,2,3,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDD	mg/kg	0.0001 {C}	0.00046 {C}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HxCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDD	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OCDF T-4-111-CDD-	mg/kg				NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Total HpCDDs	mg/kg				NA NA	NA NA	NA NA	NA	NA NA							
Total HpCDFs Total HxCDDs	mg/kg mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total HxCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total PeCDDs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total PeCDFs	mg/kg				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Total TCDDs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TCDFs	mg/kg				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Explosives																
1,3,5-Trinitrobenzene	mg/kg	230 (N)	3,100 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitroglycerine	mg/kg	0.78 {N}	10 {N}		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides																
2,4,5-T	mg/kg	78 {N}	1,000 {N}		0.00757 J	<0.214	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	mg/kg	78 (N)	1,000 {N}		6.83	<0.427	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dicamba	mg/kg	230 (N)	3,100 {N}		<0.0481	<0.427	NA NA	NA	NA NA							
MCPP	mg/kg	7.8 {N}	100 {N}		<24	<214	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides 4,4'-DDD	no a/Ira	2.7 (0)	40 (C)		0.00063 J	<0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	mg/kg mg/kg	2.7 {C} 1.9 {C}	12 {C} 8.4 {C}		<0.0016	0.00143 0.00152 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	mg/kg	1.9 (C)	8.4 (C)		0.00356	0.00132 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Alpha-Chlordane	mg/kg				<0.0036	0.00071 J	NA NA	NA NA	NA NA	NA NA						
Delta-BHC	mg/kg				<0.0016	<0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	mg/kg	0.04 {C}	0.18 (C)		<0.0016	< 0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II	mg/kg				0.00094 J	< 0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde	mg/kg				<0.0016	< 0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone	mg/kg				0.00288	< 0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-Chlordane	mg/kg				<0.0016	0.00088 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	mg/kg	39 (N)	510 (N)		0.00637	<0.00143	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs		04.00	440.00													
2-Methylnaphthalene	mg/kg	31 {N}	410 (N)		NA NA	NA NA	<0.016	NA NA								
Acenaphthene Acenaphthylene	mg/kg	470 {N} 230 {N}	6,100 (N)		NA NA	NA NA	<0.016 <0.016	NA NA								
Anthracene	mg/kg mg/kg	2,300 {N}	3,100 {N} 31,000 {N}		NA NA	NA NA	0.078	NA NA								
Benzo(a)anthracene	mg/kg	0.22 {C}	31,000 (N) 3.9 (C)		NA NA	NA NA	0.078 J	NA NA								
Benzo(a)pyrene	mg/kg	0.022 (C)	0.39 (C)		NA	NA	0.087 J	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		NA	NA	0.17	NA								
Benzo(g,h,i)perylene	mg/kg		´		NA	NA	0.054 J	NA								
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		NA	NA	0.053 J	NA								
Chrysene	mg/kg	22 {C}	390 (C)		NA	NA	0.099 J	NA								
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		NA	NA	<0.016	NA								
Fluoranthene	mg/kg	310 (N)	4,100 {N}		NA	NA	0.18 J	NA								
Fluorene	mg/kg	310 {N}	4,100 {N}		NA NA	NA NA	<0.016	NA NA								
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 (C)	3.9 (C)		NA NA	NA NA	0.06	NA NA								
Naphthalene Phenanthrene	mg/kg mg/kg	160 {N} 230 {N}	2,000 {N} 3,100 {N}		NA NA	NA NA	<0.016 0.074 J	NA NA								
Pyrene	mg/kg	230 (N)	3,100 {N}		NA NA	NA NA	0.074 J 0.12 J	NA NA								
PCBs	9'''9	_00 (11)	٠,٠٠٠ (١٠)				520			1					1	
None Detected														NA	NA	NA
Volatile Organics						ı	ı	1	ı	1	1	1				
2-Butanone	mg/kg	4,700 {N}	61,000 {N}		<0.012	<0.011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	mg/kg	7,000 {N}	92,000 {N}		0.037 B	0.077 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	mg/kg	780 (N)	10,000 {N}		0.0015 B	0.0013 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	mg/kg	85 (C)	380 (C)		<0.012	<0.011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	630 (N)	8,200 {N}		<0.012	0.00092 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
See footnotes on last page.																

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-16 through 3-18.WBG Tables-reformatted

Sample Name:		Adjusted	Adjusted	Facility-Wide	WBGSD14	WBGSD15	WBGSD16	WBGSD17	WBGSD18	WBGSD19	WBGSD20	WBGSD21	WBGSD22	WBGSD23	WBGSD24	WBGSD25
Sample Depth (ft):		Soil RBC	Soil RBC	Background	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	(Residential)	(Industrial)	Point	06/25/02	06/27/02	07/16/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	09/14/04	09/14/04	09/14/04
Semivolatile Organics																
1,2,4-Trichlorobenzene	mg/kg	78 {N}	1,000 {N}		0.023 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	mg/kg	27 (C)	120 (C)		0.049 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	mg/kg	31 {N}	410 {N}		0.065 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	mg/kg	39 (N)	510 {N}		0.13 L	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg	470 (N)	6,100 {N}		0.052 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg	2,300 {N}	31,000 {N}		0.14 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg	0.22 {C}	3.9 {C}		0.56	0.025 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg	0.022 {C}	0.39 {C}		0.44	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg	0.22 {C}	3.9 {C}		0.55	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	mg/kg				0.26 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg	2.2 {C}	39 (C)		0.15 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	mg/kg	46 (C)	200 (C)		0.33 B	0.15 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	mg/kg	32 {C}	140 {C}		0.14 J	<0.36 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg	22 {C}	390 (C)		0.56	0.023 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	mg/kg	0.022 {C}	0.39 {C}		0.098 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	mg/kg	7.8 {N}	100 {N}		0.039 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg	310 (N)	4,100 {N}		0.63	0.050 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg	310 (N)	4,100 {N}		0.071 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg	0.22 {C}	3.9 {C}		0.25 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg	160 (N)	2,000 {N}		0.058 J	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg	230 {N}	3,100 {N}		0.52	0.026 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	mg/kg	2,300 {N}	31,000 {N}		0.086 B	<0.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg	230 (N)	3,100 {N}		0.73	0.030 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics		7,000 (1)	100,000 {N}	40,041	14,300	00.000.1	40.000	22.222	23,800	25,400	20,100	18,800	14,400	28,500	00.000	40.000
Aluminum	mg/kg	7,800 {N}	100 000 (N)		14.300	22,000 J	19,300	30,900	23.800		20.100					
	20 a /l ca					.1.07.1	•								20,000	19,300
Antimony	mg/kg	3.13 {N}	40.88 {N}		0.570 B	<1.07 L	<0.430	<0.470	<0.490 L	0.750 B	0.690 B	<0.460	0.610 B	0.510 B	<0.470	<0.430
Arsenic	mg/kg	3.13 {N} 0.43 {C}	40.88 {N} 1.91 {C}	15.8 {C}	0.570 B 3.38 J	3.08 J	<0.430 9.60	<0.470 8.50	<0.490 L 5.50	0.750 B 6.10	0.690 B 4.50	<0.460 4.20	0.610 B 9.60	0.510 B 9.90	<0.470 5.40	<0.430 5.40
Arsenic Barium	mg/kg mg/kg	3.13 {N} 0.43 {C} 1,564 {N}	40.88 {N} 1.91 {C} 20,440 {N}	15.8 {C} 209 {N}	0.570 B 3.38 J 113	3.08 J 70.8	<0.430 9.60 63.3	<0.470 8.50 108	<0.490 L 5.50 105	0.750 B 6.10 112	0.690 B 4.50 119	<0.460 4.20 113	0.610 B 9.60 60.7	0.510 B 9.90 60.6	<0.470 5.40 109	<0.430 5.40 95.3
Arsenic Barium Beryllium	mg/kg mg/kg mg/kg	3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N}	15.8 {C} 209 {N} 1.02 {N}	0.570 B 3.38 J 113 0.890 B	3.08 J 70.8 0.950 J	<0.430 9.60 63.3 1.10 J	<0.470 8.50 108 1.70	<0.490 L 5.50 105 1.10	0.750 B 6.10 112 1.20	0.690 B 4.50 119 0.900	<0.460 4.20 113 0.840	0.610 B 9.60 60.7 0.920	0.510 B 9.90 60.6 1.90	<0.470 5.40 109 1.10	<0.430 5.40 95.3 1.10
Arsenic Barium Beryllium Cadmium	mg/kg mg/kg mg/kg mg/kg	3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N} 3.9 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N}	15.8 {C} 209 {N} 1.02 {N} 0.69 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B	3.08 J 70.8 0.950 J <0.210	<0.430 9.60 63.3 1.10 J <0.0450	<0.470 8.50 108 1.70 0.470 B	<0.490 L 5.50 105 1.10 0.460 B	0.750 B 6.10 112 1.20 0.490 B	0.690 B 4.50 119 0.900 0.440 B	<0.460 4.20 113 0.840 0.410 B	0.610 B 9.60 60.7 0.920 0.470 J	0.510 B 9.90 60.6 1.90 0.120 J	<0.470 5.40 109 1.10 0.250 J	<0.430 5.40 95.3 1.10 0.270 J
Arsenic Barium Beryllium Cadmium Calcium	mg/kg mg/kg mg/kg mg/kg	3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N} 3.9 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N}	15.8 {C} 209 {N} 1.02 {N} 0.69 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J	3.08 J 70.8 0.950 J <0.210 38,400	<0.430 9.60 63.3 1.10 J <0.0450 14,500	<0.470 8.50 108 1.70 0.470 B 69,900	<0.490 L 5.50 105 1.10 0.460 B 76,500	0.750 B 6.10 112 1.20 0.490 B 65,700	0.690 B 4.50 119 0.900 0.440 B 120,000	<0.460 4.20 113 0.840 0.410 B 101,000	0.610 B 9.60 60.7 0.920 0.470 J 25,700	0.510 B 9.90 60.6 1.90 0.120 J 29,200	<0.470 5.40 109 1.10 0.250 J 75,100	<0.430 5.40 95.3 1.10 0.270 J 63,600
Arsenic Barium Beryllium Cadmium Calcium Chromium	mg/kg mg/kg mg/kg mg/kg mg/kg	3.13 {N} 0.43 {C} 1,564 {N} 15.6 {N} 3.9 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N}	15.8 {C} 209 {N} 1.02 {N} 0.69 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J	3.08 J 70.8 0.950 J <0.210 38,400 28.4	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7	<0.470 8.50 108 1.70 0.470 B 69,900 80.6	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0	<0.460 4.20 113 0.840 0.410 B 101,000 43.1	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7	<0.470 5.40 109 1.10 0.250 J 75,100 34.2	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N)	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N}	15.8 {C} 209 {N} 1.02 {N} 0.69 {N} 65.3 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 312.9 (N)	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 (N) 3.9 {N} 23.5 {N} 5,500 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 (N) 3.9 {N} 23.5 {N} 312.9 {N} 5,500 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	mg/kg	3.13 (N) 0.43 (C) 1,564 (N) 15.6 (N) 3.9 (N) 23.5 (N) 312.9 (N) 5,500 (N) 400	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 312.9 {N} 5,500 {N} 400 156.4 {N} 2.35	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8 2,543 (N)	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 312.9 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N}	15.8 {C} 209 {N} 1.02 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 (N) 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270	 <0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 1,140 	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 72.3 53.5 {N} 50,962 {N} 26.8 2,543 {N} 0.13 62.8 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L	 <0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 1,7.0 1,140 <1.70 	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.910	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L <2.14 L	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.910 <0.180	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8 2,543 (N) 0.13 62.8 (N)	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 126 J	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L <2.14 L 176	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 17.140 <1.70 <0.340 123 B	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.910 <0.180 232 B	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N} 0.548 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 75,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8 2,543 (N) 0.13 62.8 (N) 2.11 (N)	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 126 J 0.200 B	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L <2.14 L 176 0.200 J	 <0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340 123 B <1.00 	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B <0.560	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B <0.570	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B <0.590	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B <0.620	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B <0.540	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B <0.430	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B <0.500	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.910 <0.180 232 B <0.550	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B <0.510
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N} 7.8 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 511 {N} 7.154 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50.962 {N} 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 126 J 0.200 B 22.4	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L 176 0.200 J 41.0	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340 123 B <1.00 52.8	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B <0.560 55.5	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B <0.570 41.5	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B <0.590 43.3	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B <0.620 35.5	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B <0.540 33.8	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B <0.430 57.4	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B <0.500 56.2	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.180 232 B <0.550 38.1	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B <0.510 37.2
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N} 0.548 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 75,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 7.154 {N}	15.8 (C) 209 (N) 1.02 (N) 0.69 (N) 65.3 (N) 72.3 53.5 (N) 50,962 (N) 26.8 2,543 (N) 0.13 62.8 (N) 2.11 (N)	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 126 J 0.200 B	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L <2.14 L 176 0.200 J	 <0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340 123 B <1.00 	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B <0.560	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B <0.570	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B <0.590	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B <0.620	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B <0.540	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B <0.430	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B <0.500	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.910 <0.180 232 B <0.550	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B <0.510
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Miscellaneous	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 (N) 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N} 7.8 {N} 2,346 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 511 {N} 102.2 {N} 30,660 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 72.3 53.5 {N} 50.962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N} 202 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 L <2.40 126 J 0.200 B 22.4 52.5 J	3.08 J 70.8 0.950 J 70.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L 176 0.200 J 41.0 65.5 J	 <0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340 123 B <1.00 52.8 63.1 	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B <0.560 55.5 165	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B <0.570 41.5 118	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B <0.590 43.3 96.3	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B <0.620 35.5 93.7	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B <0.540 33.8 121	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B <0.430 57.4 59.3	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B <0.500 56.2 59.9	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.180 232 B <0.550 38.1 82.2	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B <0.510 37.2 71.3
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	mg/kg	3.13 (N) 0.43 (C) 1,564 {N} 15.6 {N} 3.9 {N} 23.5 {N} 5,500 {N} 400 156.4 {N} 2.35 156.4 {N} 39.1 {N} 39.1 {N} 7.8 {N}	40.88 {N} 1.91 {C} 20,440 {N} 204.4 {N} 51.1 {N} 306.6 {N} 4,088 {N} 72,000 {N} 750 2,044 {N} 30.66 2,044 {N} 511 {N} 511 {N} 511 {N} 7.154 {N}	15.8 (C) 209 {N} 1.02 {N} 0.69 {N} 65.3 {N} 72.3 53.5 {N} 50.962 {N} 26.8 2,543 {N} 0.13 62.8 {N} 2.11 {N} 108 {N}	0.570 B 3.38 J 113 0.890 B 0.150 B 61,100 J 21.1 J 7.60 J 11.1 14,200 18.7 2,500 1,540 0.0900 J 10.7 786 <2.40 L <2.40 126 J 0.200 B 22.4	3.08 J 70.8 0.950 J <0.210 38,400 28.4 9.30 J 17.2 J 19,300 29.0 10,200 206 0.0500 J 17.8 1,270 <2.14 L 176 0.200 J 41.0	<0.430 9.60 63.3 1.10 J <0.0450 14,500 42.7 17.2 19.3 31,500 45.5 4,200 J 1,700 0.0410 J 17.0 1,140 <1.70 <0.340 123 B <1.00 52.8	<0.470 8.50 108 1.70 0.470 B 69,900 80.6 13.8 24.5 27,000 523 6,610 241 0.0670 22.7 1,860 <0.910 <0.190 L 237 B <0.560 55.5	<0.490 L 5.50 105 1.10 0.460 B 76,500 45.6 7.80 19.1 19,900 207 4,690 156 0.0520 16.4 1,210 K <0.940 <0.190 L 233 B <0.570 41.5	0.750 B 6.10 112 1.20 0.490 B 65,700 37.8 8.10 19.2 22,100 95.0 5,010 157 0.0400 16.5 1,250 <0.960 <0.200 L 251 B <0.590 43.3	0.690 B 4.50 119 0.900 0.440 B 120,000 33.0 6.40 15.6 16,400 134 4,170 191 0.0330 J 13.2 1,060 <1.00 <0.210 L 243 B <0.620 35.5	<0.460 4.20 113 0.840 0.410 B 101,000 43.1 6.50 15.1 16,400 276 3,700 158 0.0410 J 12.2 975 <0.890 <0.180 L 235 B <0.540 33.8	0.610 B 9.60 60.7 0.920 0.470 J 25,700 66.8 8.10 12.0 28,600 112 1,840 163 0.0360 10.9 698 1.20 J <0.140 L 144 B <0.430 57.4	0.510 B 9.90 60.6 1.90 0.120 J 29,200 54.7 17.4 21.6 27,700 152 6,820 91.1 0.0760 24.0 2,120 <0.820 <0.170 182 B <0.500 56.2	<0.470 5.40 109 1.10 0.250 J 75,100 34.2 7.90 17.9 19,400 79.8 4,970 143 0.0550 14.6 1,290 <0.180 232 B <0.550 38.1	<0.430 5.40 95.3 1.10 0.270 J 63,600 31.4 7.30 17.9 19,300 37.6 4,390 129 0.0490 J 14.2 973 <0.840 <0.170 197 B <0.510 37.2

RBC Risk Based Concentration.

Carcinogen. {C}

Noncarcinogen.

B (Inorganics) Constituent concentration quanitified as estimated.

B (Organics) Constituent was detected in the associated method blank.

Constituent concentration quanitified as estimated. Estimated concentration bias high.

Estimated concentration bias low.

NA Not Analyzed.

24,400 Constituent concentration exceeds Adjusted Soil RBC (Residential).

10.6 J Constituent concentration exceeds Adjusted Soil RBC (Industrial).

16 Inorganics constituent concentration exceeds Facility-Wide Background Point Estimate.

Note: Inorganics Facility-Wide Background Point Estimate taken from Facility-Wide Background Study Report, IT Corporation, 2001.

Sample Name: Date Collected:		Aquatic Life Freshwater Chronic	Human Health All Other Surface Waters	SW-01 06/05/97	SW-02 06/04/97	WBGSW1 07/16/98	WBGSW2 07/16/98	WBGSW3 07/16/98	WBGSW4 05/27/99	WBGSW5 05/27/99	WBGSW6 05/27/99	WBGSW07 06/26/02	WBGSW08 06/25/02	WBGSW09 06/25/02	WBGSW10 06/26/02	WBGSW13 06/26/02	WBGSW14 06/25/02	WBGSW15 06/27/02
Dioxin/Furan	- Cinto			00/00/01	00/0-1/01	01710700	01/10/00	01710/00	00/21/00	00/2:/00	00/21/00	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/20/02	00/21/02
OCDD	pg/L			NA	NA	NA	NA	NA	NA	NA	NA	14.06 B	32.93 B	35.04 B	25.24 B	NA	NA	NA
Explosives	1.0					ı			ı		l .							
m-Nitrotoluene	ug/L			NA	NA	<0.5	<0.5 L	<0.5	NA	NA	NA	<0.52	0.36 J	0.38 J	<0.52	NA	NA	NA
Herbicides	~g/ =					10.0	10.0 =	10.0				10.02	0.000	0.000	10.02	1		
2,4-D	ug/L			NA	NA	NA	NA	NA	NA	NA	NA	NA	3.68	NA	<0.5	<0.5	3.56	<0.5
MCPP	ug/L			NA	NA	NA NA	54.1 J	NA NA	<125	<125	<125	<125						
Organochlorine Pesticides	ug/L			IVA	INA	IVA	INA	INA	INA	IVA	INA	INA	37.13	INA	\125	\125	\125	\125
Dieldrin	110/1	0.056	0.0014	NA	NIA	NA	NA	I NIA	NA	NIA	I NIA	NA	0.00521 J	NA	1 40.00	0.00358 J	0.00001 1	-0.02
PAHs	ug/L	0.030	0.0014	INA	NA	INA	INA	NA	INA	NA	NA	INA	0.003213	INA	<0.02	0.00336 3	0.00901 J	<0.02
2-Methylnaphthalene	ug/L			NA	NA	NA	NA	NA	NA	NA	NA	0.03 J	< 0.05	< 0.05	0.03 J	NA	NA	NA
Acenaphthene	ug/L		2,700	NA NA	NA.	NA NA	NA NA	<0.1	NA.	NA NA	NA NA	0.02 J	<0.05	<0.05	<0.05	NA NA	NA NA	NA NA
Anthracene	ug/L		110,000	NA	NA	NA	NA	< 0.05	NA	NA	NA	0.02 J	<0.05	<0.05	<0.05	NA	NA	NA
Fluorene	ug/L		14,000	NA	NA	NA	NA	<0.1	NA	NA	NA	0.03 J	<0.05	<0.05	<0.05	NA	NA	NA
Naphthalene	ug/L			NA	NA NA	NA NA	NA NA	<0.1	NA NA	NA	NA NA	0.02 B	<0.05	<0.05	0.04 B	NA NA	NA	NA NA
Phenanthrene	ug/L			NA NA	NA NA	NA NA	NA NA	<0.05	NA NA	NA	NA NA	0.03 J	<0.05	<0.05	<0.05	NA NA	NA	NA NA
Perchlorate	~ y, _	<u>l</u>			,, \	, .	, .	10.00		, .		5.500	-5.00	10.00	-0.00			
Perchlorate	ug/L			NA	NA	NA	NA	NA	<3	<3	<3 [<3]	<1	<1	<1	<1	<1	1.71	<1
PCBs	ug/L			14/7	14/7	IVA	14/7	14/7	~ 0	70	10 [20]		_ ``	<u> </u>	<u> </u>		1.71	
None Detected				NA	NA	NA	NA	NA	NA	NA	NA							
Volatile Organics				INA	INA	INA	144	INA	INA	INA	INA							
<u> </u>	/1	I		NIA	NIA	.5.0	401		NΙΔ	NIA	NIA.	.4.0	.4.0	.4.0	.4.0	.4.0	.4.0	.4.0
2-Butanone	ug/L			NA	NA NA	<5.0	4.0 J	<5.0	NA NA	NA NA	NA NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Acetone Carbon Digulfida	ug/L			NA	NA	<5.0	<5.0	<5.0	NA	NA NA	NA NA	2.8 J	<4.0 J	<4.0 J	<4.0 J	<4.0 J	<4.0 J	<4.0 J
Carbon Disulfide	ug/L			NA	NA	<5.0	<5.0	<5.0	NA	NA	NA NA	0.23 B	0.13 B	0.12 B	0.25 B	0.21 B	0.18 B	0.070 B
Chloroform	ug/L		29,000	NA	NA	<1.0	3.0	<1.0	NA	NA	NA NA	0.13 J	0.60 J	0.47 J	1.1	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene Tetrachloroethene	ug/L		 89	NA NA	NA NA	<1.0 <1.0	<1.0	<1.0	NA NA	NA NA	NA NA	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	0.12 J	<1.0 <1.0
	ug/L				NA		<1.0	<1.0						<1.0	<1.0	<1.0	0.16 J	
Toluene	ug/L		200,000 810	NA NA	NA NA	<1.0	<1.0	<1.0	NA NA	NA NA	NA NA	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	0.21 J	<1.0	<1.0	<1.0
Trichloroethene	ug/L		810	INA	NA	<1.0	<1.0	<1.0	INA	INA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	0.11 J	<1.0
Semivolatile Organics	1 /	1	17.000	.		4.0	10	4.0	40	10	405 401		5.0	5.0	5.0	0.04.1	5.0	
1,2-Dichlorobenzene	ug/L		17,000	NA	NA	<10	<10	<10	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	0.21 J	<5.0	<5.0
1,3-Dichlorobenzene	ug/L		2,600	NA	NA	NA	NA	NA	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	0.21 J	<5.0	<5.0
1,4-Dichlorobenzene	ug/L		2,600	NA	NA	NA 50	NA 50	NA 50	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	0.28 J	<5.0	<5.0
Benzoic Acid	ug/L			NA	NA	<50	<50	<50	NA 10	NA	NA 10 f 10	<25	5.2 J	<25	5.2 J	<25	6.7 J	<25
bis(2-Ethylhexyl)phthalate	ug/L			NA	NA	<10	<10	<10	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	<5.0	2.6 J	<5.0
Butylbenzylphthalate	ug/L		5,200	NA	NA	<10	<10	<10	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	<5.0	0.63 B	<5.0
Diethylphthalate	ug/L		120,000	NA	NA	1.0 J	<10	<10	<10	<10	<10 [<10]	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Di-n-Butylphthalate	ug/L		12,000	NA	NA	<10	<10	<10	<10	0.13 B	<10 [<10]	<5.0	0.60 B	0.91 B	<5.0	<5.0	0.67 B	<5.0
Inorganics																		
Aluminum	ug/L			NA	NA	66.6 B	63.0 B	39.2 B	232 B	67.9 B	91.8 B [81.9 B]	284	200 J	150 J	304	811	120 J	428
Arsenic	ug/L	150		NA	NA	<7.00	<7.00	<7.00	<6.00	8.60 B	10.4 K [10.3 K]	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Barium	ug/L			NA	NA	79.2 B	73.4 B	54.0 B	56.4 J	63.1 L	63.9 J [63.3 J]	70.7	80.3	80.8	84.9	148	101	110
Beryllium	ug/L			NA 72.000	NA 77.200	<1.00	<1.00	<1.00	1.10 B	<1.00	<1.00 [<1.00]	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Calcium	ug/L			73,600	77,200	61,900 B	56,700 B	66,500 B	70,300	73,400	71,100 [71,100]	73,800	59,300	59,000	61,500	90,700	70,700	86,100
Copper	ug/L	9 {H}		NA	NA 207	19.6 B	15.0 B	23.5 B	20.2 K	4.10 B	2.20 K [1.10 K]	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Iron	ug/L			ND	297	307 B	434 B	41.6 B	261 J	88.0 B	180 [157]	204	303	281	428	50,900	131	310
Lead	ug/L	14 {H}		ND 40.000	2.00	<2.00	<2.00	<2.00	<2.00 L	4.00 B	<2.00 L [<2.00 L]	0.370 B	1.20 B	1.30 B	28.9	0.170 B	<2.00	0.210 B
Magnesium	ug/L			12,600	13,800	15,300 B	14,200 B	12,100 B	12,900	14,900	15,000 [15,000]	13,900	17,200	17,000	17,100	21,000	15,800	20,200
Manganese	ug/L		4.600	ND NA	26.0	10.2 B	18.5 B	2.00 B	24.0	14.1 K	11.4 J [10.5 J]	5.30 J	10.3	21.7	23.6	1,470	47.4	7.40 J
Nickel	ug/L	20 {H}	4,600	NA 2.700	NA 2.610	1.40 K	1.50 K	<1.00	<1.00	<1.00	<1.00 [<1.00]	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Potassium	ug/L	 E		2,700	2,610	2,100 B	2,010 B	1,900 B	2,090 J	2,090	2,090 J [2,100 J]	3,710	3,790	3,540	3,820	4,080	2,500 J	3,300
Selenium	ug/L	5	11,000	NA	NA	<5.00	<5.00	<5.00	<4.00	<4.00 L	<4.00 [<4.00]	<5.00	<5.00	<5.00	<5.00	<5.00	0.440 B	<5.00
Silver	ug/L			NA 6.540	NA	<2.00 J	<2.00 J	<2.00 J	1.20 K	<1.00	1.00 K [<1.00]	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L			6,540	22,400	29,700	27,800	21,100	25,700	35,000	37,100 [37,100]	22,200	36,600	36,200	35,900	37,600	29,000	63,900
Thallium	ug/L		6.3	NA 70.0	NA 75.0	5.40 B	<2.00 L	2.30 B	<7.00 L	<7.00	<7.00 L [<7.00 L]	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Vanadium	ug/L			79.0	75.0	<2.00	<2.00	<2.00	1.20 K	1.20 B	1.10 K [<1.00]	<50.0	<50.0	<50.0	<50.0	<50.0	16.0 J	<50.0
Zinc	ug/L	120 {H}	69,000	NA	NA	21.3 B	21.1 B	23.7 B	21.3 K	18.4 B	19.3 K [18.1 K]	18.0 J	<20.0	<20.0	20.6	<20.0	<20.0	<20.0
Miscellaneous	"	T		N/A	N/ 0	N14	h	N/ A	h 1 A	N/A	N.A	0.40	0.10	047	004	0.10	0.10	000
Hardness	mg/L			NA	NA	NA	NA	NA	NA	NA	NA	242	219	217	224	313	242	298
(LI) Value has not																		

[{]H} Value has not been adjusted for hardness.

B (Inorganics) Constituent concentration quantified as estimated.

B (Organics) Constituent was detected in the associated method blank

Constituent concentration quanitified as estimated.

K Estimated concentration bias high.

Estimated concentration bias low.

NA Not Analyzed.

^{10.6} J Constituent concentration exceeds Virginia Surface Water Human Health Standards (All Other Surface Waters)

10.6 J Constituent concentration exceeds Virginia Surface Water Aquatic Life Freshwater Chronic Standard

Table 3-19Construction Details
New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Monitor Well	General Well Location	Northing* (ft)	Easting* (ft)	Total Depth (ft bls)	Well Bottom (ft msl)	TOC Elevation (ft msl)
	Downgradient and proximal to					
BLAMW01	buildings with conductive flooring	3564530.07	10851995.99	223.5	1862.25	2090.92
BLAMW02	Downgradient of BLA	3564814.00	10851807.48	154.8	1915.53	2077.07
	Downgradient and proximal to					
IAAMW01	buildings with conductive flooring	3568011.29	10850394.64	36.2	2077.23	2118.90
IAAMW02	Downgradient of IAA	3567399.30	10849464.83	162.6	1958.69	2126.63
IAAMW03	Downgradient of IAA	3566913.67	10850758.28	80.7	2008.36	2094.51
	Downgradient of IAA, near unnamed					
IAAMW04	stream	3565504.32	10851159.66	90.5	1927.31	2023.64
	Near the center of former burning					
	area, in area with highest lead					
NBGMW01	concentrations in soil	3569777.80	10851810.48	98.0	2015.24	2118.34
	North of former burning area, near					
NBGMW02	NRU installation boundary	3569872.47	10851804.11	103.4	2004.08	2112.67
WBGMW01	Center of former burning area	3565783.83	10849309.86	28.8	2026.52	2060.38
	Between former burning area and					
WBGMW02	pond	3565612.88	10849437.23	52.0	2006.39	2063.35
	Between former burning area and					
WBGMW03	pond	3565596.35	10849266.40	51.5	1997.04	2053.18

^{*} Coordinates in NAD 1983, US State Plane (Virginia South).

ft Feet.

ft bls Feet below land surface. ft msl Feet above mean sea level.

Table 3-20 Constituents Detected in Groundwater, June 2007, Sampling Event New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Monitor Well ID:		Virginia MCL ¹	Region III RBC ²	BLAMW01	BLAMW02	IAAMW01	IAAMW02	IAAMW03	IAAMW04	NBGMW01	NBGMW02	WBGMW01	WBGMW02	WBGMW03
Date Sampled:	Units	IVICL	RDC	6/20/2007	6/21/2007	6/21/2007	6/20/2007	6/20/2007	6/21/2007	6/19/2007	6/19/2007	6/18/2007	6/18/2007	6/19/2007
Dioxin/Furan	n a /l			<0.00E76	0.0424 1	NIA	0.000742	<0.000E1	0.00042.1	0.0020 1	0.00456.1	<0.00206	<0.00256	<0.0024E
2,3,7,8-TCDF 2,3,7,8-TCDD	ng/L	0.03	0.00045	<0.00576 <0.00576	0.0121 J 0.00425 J	NA NA	0.000743 J <0.00113	<0.00251 <0.00309	0.00913 J 0.00315 J	0.0038 J 0.00318 J	0.00156 J <0.00201	<0.00296 <0.00396	<0.00356 <0.00512	<0.00245 <0.00356
1,2,3,7,8-PECDD	ng/L ng/L	0.03	0.00045	<0.00576	0.00425 J 0.00471 J	NA NA	<0.00113	<0.00598	0.00315 J	0.00318 J	0.00201 0.00455 J	<0.00396	<0.00512	<0.00546
1,2,3,4,7,8-HXCDD	ng/L		0.011	<0.00576	<0.00577	NA	<0.00563	<0.00598	<0.00575	0.00575 J	0.00284 J	<0.00846	<0.00539	<0.00546
1.2.3.6.7.8-HXCDD	ng/L		0.011	<0.00576	<0.00577	NA	< 0.00563	<0.00598	<0.00575	0.00513 J	0.00324 J	<0.00846	<0.00539	<0.00546
1,2,3,7,8,9-HXCDD	ng/L		0.011	< 0.00576	< 0.00577	NA	< 0.00563	<0.00598	< 0.00575	0.00554 J	0.00333 J	<0.00846	<0.00539	< 0.00546
1,2,3,4,6,7,8-HPCDD	ng/L			< 0.00576	0.00312 J	NA	< 0.00563	<0.00598	< 0.00575	0.00367 J	0.00373 J	0.0479 J, B	< 0.00539	<0.00546
OCDD	ng/L			0.00816 J	0.065 J	NA	0.00628 J	0.0144 J	0.0229 J	0.0102 J	0.0226 J	0.395 B	0.00688 J	<0.0109
1,2,3,7,8-PECDF	ng/L			<0.00576	0.019 J	NA	0.000901 J	0.00268 J	0.0122 J	0.00946 J	0.00513 J	<0.00846	<0.00539	<0.00546
2,3,4,7,8-PECDF	ng/L			0.000968 J	0.0158 J	NA	0.00115 J	0.00211 J	0.00975 J	0.00738 J	0.00431 J	<0.00846	0.00205 J	<0.00546
1,2,3,4,7,8-HXCDF	ng/L			0.00272 J	0.00367 J	NA	0.00173 J	<0.00598	0.00221 J	0.0071 J	0.00434 J	0.00802 J	0.00641 J	<0.00546
1,2,3,6,7,8-HXCDF	ng/L			0.00177 J	0.0024 J	NA	0.0011 J	<0.00598	0.00129 J	0.00625 J	0.00347 J	0.00369 J	<0.00539	<0.00546
2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	ng/L			<0.00576 <0.00576	0.00199 J <0.00577	NA NA	<0.00563 <0.00563	<0.00598 <0.00598	0.000989 J <0.00575	0.00419 J 0.00623 J	0.00261 J 0.0034 J	<0.00846 <0.00846	<0.00539 <0.00539	<0.00546 <0.00546
1,2,3,4,6,7,8-HPCDF	ng/L ng/L			0.0121 J	0.00245 J	NA NA	0.00363 0.00426 J	<0.00598	0.00138 J	0.00623 J	0.0034 J	0.0308 J, B	0.0128 J	0.00346
1,2,3,4,0,7,6-HPCDF	ng/L			<0.00576	<0.00577	NA	<0.00563	<0.00598	<0.00575	0.00003 J	<0.00583	<0.00846	<0.00615	<0.00546
OCDF	ng/L			0.0236 J	<0.0115	NA	0.00505 J	<0.012	<0.0115	0.00712 J	0.00758 J	0.0926 J, B	0.0395 J	0.0101 J
TOTAL TCDD	ng/L			<0.00188	0.00425 J	NA	<0.00563	<0.00309	0.00315 J	0.007033 0.00318 J	<0.00201	<0.00396	<0.00512	<0.00356
TOTAL PECDD	ng/L			<0.00576	0.00471 J	NA	< 0.00563	<0.00598	0.00294 J	0.00777 J	0.00455 J	<0.00846	<0.00539	<0.00546
TOTAL HXCDD	ng/L		0.011	<0.00576	<0.00577	NA	< 0.00563	<0.00598	<0.00575	0.0164 J	0.00942 J	0.0145 J	<0.00539	<0.00546
TOTAL HPCDD	ng/L			<0.00576	0.00686 J	NA	< 0.00563	<0.00598	<0.00575	0.00367 J	0.00373 J	0.0847 J, B	<0.00539	<0.00546
TOTAL TCDF	ng/L			<0.00156	0.0121 J	NA	0.000743 J	<0.00251	0.00913 J	0.0038 J	0.00156 J	<0.00296	<0.00356	<0.00245
TOTAL PECDF	ng/L			0.00258 J	0.0348 J	NA	0.00264 J	0.00478 J	0.0227 J	0.0205 J	0.00944 J	0.00305 J	0.0103 J	<0.00546
TOTAL HXCDF	ng/L			0.00592 J	0.00806 J	NA	0.00399 J	<0.00598	0.00448 J	0.0238 J	0.0138 J	0.0175 J	0.0121 J	<0.00546
TOTAL HPCDF	ng/L			0.0147 J	0.00245 J	NA	0.00426 J	<0.00598	0.00138 J	0.0102 J	0.00457 J	0.0376 J, B	0.0128 J	0.0083 J
Explosives														
None Detected						NA								
Herbicides		_												
None Detected						NA						NA		
Organochloride Pesticides		_												
None Detected						NA						NA		
PAHs														
None Detected						NA								
PCBs														
None Detected						NA						NA		
Volatile Organics														
Acetone	μg/L		550	<25	5.4 J	<25	<25	<25	<25	<25	<25	<25	5.6 J	<25
Chloroform	μg/L	80	0.15	<1	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1
Toluene	μg/L	1,000	75	0.74 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Semivolatile Organics		_												
None Detected						NA								
Inorganics														
Aluminum	μg/L	50	3,700	424	4,970	3,490	<200	875	2,850	448	1,790	17,800	91 J	<200
Arsenic	μg/L	10	0.045	<10	<10	20.9	<10	<10	<10	6.3 J	<10	8.2 J	<10	<10
Barium	μg/L	2,000	730	151 J	242	105 J	240	49.7 J	41.3 J	99.5 J	93.9 J	130 J	81.9 J	147 J
Beryllium	μg/L	4	7.3	<4	<4	17.7	<4	1.2 J	<4	<4	1.1 J	1.9 J	<4	<4
Calcium	μg/L			63,000	260,000	47,900	79,600	75,900	63,800	78,200	75,600	345,000	95,900	106,000
Chromium	μg/L	100	11	56.9	170	101	4 J <50	35.2 2.4 J	17.1	17.1	20.5	48	7 J	3.8 J
				47 '	40.5.1				1.5 J	5.6 J	1.9 J	9.3 J	<50	2.4 J
Cobalt	μg/L			4.7 J	10.5 J	30.2 J						47 ^ !		-05
Cobalt Copper	μg/L μg/L	1,300	150	3.1 J	19.3 J	42	<25	<25	1.3 J	<25	<25	17.2 J	<25	<25
Cobalt Copper Iron	µg/L µg/L µg/L	1,300 300	150 2,600	3.1 J 683	19.3 J 7,280	42 83,300	<25 <300	<25 1,490	1.3 J 4,270	<25 470	<25 2,470	19,200	<25 <300	<300
Cobalt Copper Iron Lead	µg/L µg/L µg/L µg/L	1,300 300 15	150 2,600	3.1 J 683 3.5 J	19.3 J 7,280 7.1 J	42 83,300 80.9	<25 <300 2.9 J	<25 1,490 2.5 J	1.3 J 4,270 3.5 J	<25 470 2.9 J	<25 2,470 1.8 J	19,200 34.3	<25 <300 1.8 J	<300 2.2 J
Cobalt Copper Iron Lead Magnesium	µg/L µg/L µg/L µg/L µg/L	1,300 300 15	150 2,600 	3.1 J 683 3.5 J 17,200	19.3 J 7,280 7.1 J 61,100	42 83,300 80.9 13,900	<25 <300 2.9 J 18,700	<25 1,490 2.5 J 9,670	1.3 J 4,270 3.5 J 30,100	<25 470 2.9 J 11,600	<25 2,470 1.8 J 16,400	19,200 34.3 104,000	<25 <300 1.8 J 36,800	<300 2.2 J 32700
Cobalt Copper Iron Lead Magnesium Manganese	µg/L µg/L µg/L µg/L µg/L µg/L	1,300 300 15 50	150 2,600 73	3.1 J 683 3.5 J 17,200 29.4	19.3 J 7,280 7.1 J 61,100 151	42 83,300 80.9 13,900 1,790	<25 <300 2.9 J 18,700 27.3	<25 1,490 2.5 J 9,670 30.1	1.3 J 4,270 3.5 J 30,100 169	<25 470 2.9 J 11,600 32.7	<25 2,470 1.8 J 16,400 42.4	19,200 34.3 104,000 256	<25 <300 1.8 J 36,800 15.5	<300 2.2 J 32700 6.7 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1,300 300 15 50 2	150 2,600 73 1.1	3.1 J 683 3.5 J 17,200 29.4 <1	19.3 J 7,280 7.1 J 61,100 151 <1	42 83,300 80.9 13,900 1,790 <1	<25 <300 2.9 J 18,700 27.3 <1	<25 1,490 2.5 J 9,670 30.1 <1	1.3 J 4,270 3.5 J 30,100 169 <1	<25 470 2.9 J 11,600 32.7 <1	<25 2,470 1.8 J 16,400 42.4 <1	19,200 34.3 104,000 256 0.54 J	<25 <300 1.8 J 36,800 15.5 <1	<300 2.2 J 32700 6.7 J <1
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1,300 300 15 50 2	150 2,600 73 1.1 73	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J	19.3 J 7,280 7.1 J 61,100 151 <1	42 83,300 80.9 13,900 1,790 <1 92.8	<25 <300 2.9 J 18,700 27.3 <1 3.6 J	<25 1,490 2.5 J 9,670 30.1 <1	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J	19,200 34.3 104,000 256 0.54 J 22 J	<25 <300 1.8 J 36,800 15.5 <1	<300 2.2 J 32700 6.7 J <1 5.8 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Potas	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1,300 300 15 50 2	150 2,600 73 1.1 73	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J	42 83,300 80.9 13,900 1,790 <1 92.8 7,790 J	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1,300 300 15 50 2 50	150 2,600 -73 1.1 73	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10	42 83,300 80.9 13,900 1,790 <1 92.8 7,790 J 22.2	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	 1,300 300 15 50 2 50	150 2,600 -73 1.1 73 	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J	42 83,300 80.9 13,900 1,790 <1 92.8 7,790 J 22.2 2,850 J	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J	<25 1,490 2.5 J 9,670 30.1 <11.8 J 3,450 J <10 8,850 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	 1,300 300 15 50 2 50	150 2,600 73 1.1 73 3.7	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J 1.8 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J 15.3 J	42 83,300 80.9 13,900 -1,790 <1 92.8 7,790 J 22.2 2,850 J	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J <1.1	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J <10 8,850 J 3.1 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J 8.6 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J 1.5 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J 5.6 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600 40.3 J	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J 1.1 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J <50
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium Zinc Zinc	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	 1,300 300 15 50 2 50	150 2,600 -73 1.1 73 	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J	42 83,300 80.9 13,900 1,790 <1 92.8 7,790 J 22.2 2,850 J	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J	<25 1,490 2.5 J 9,670 30.1 <11.8 J 3,450 J <10 8,850 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium Zinc Miscellaneous	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	 1,300 300 15 50 2 50 50 50 5,000	150 2,600 73 1.1 73 3.7 1,100	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J 1.8 J 17.4 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J 23.9	42 83,300 80.9 13,900 <1,790 <1 92.8 7,790 J 22.2 2,850 J 112 226	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J <1.1 5.1 J	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J <10 8,850 J 3.1 J 7.2 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J 8.6 J 7.9 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J 1.5 J 9 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J 5.6 J 13.8 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600 40.3 J 112	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J 1.1 J 10.5 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J <50 17.1 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium Zinc Miscellaneous Perchlorate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1,300 300 115 50 2 50 5,000	150 2,600 73 1.1 73 3.7 1,100	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J 1.8 J 17.4 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J 15.3 J 23.9	42 83,300 80.9 13,900 <1,790 <1 92.8 7,790 J 22.2 2,850 J 112 226	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J <1.1 5.1 J	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J <10 8,850 J 3.1 J 7.2 J <0.2	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J 8.6 J 7.9 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J 1.5 J 9 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J 5.6 J 13.8 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600 40.3 J 112 <0.2	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J 1.1 J 10.5 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J <50 17.1 J
Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium Zinc Miscellaneous	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	 1,300 300 15 50 2 50 50 50 5,000	150 2,600 73 1.1 73 3.7 1,100	3.1 J 683 3.5 J 17,200 29.4 <1 35.8 J 4,000 J <10 3,130 J 1.8 J 17.4 J	19.3 J 7,280 7.1 J 61,100 151 <1 115 9,330 J <10 5,730 J 23.9	42 83,300 80.9 13,900 <1,790 <1 92.8 7,790 J 22.2 2,850 J 112 226	<25 <300 2.9 J 18,700 27.3 <1 3.6 J 3,370 J <10 6,910 J <1.1 5.1 J	<25 1,490 2.5 J 9,670 30.1 <1 11.8 J 3,450 J <10 8,850 J 3.1 J 7.2 J	1.3 J 4,270 3.5 J 30,100 169 <1 11.8 J 3,820 J <10 6,860 J 8.6 J 7.9 J	<25 470 2.9 J 11,600 32.7 <1 11.8 J 4,350 J <10 2,830 J 1.5 J 9 J	<25 2,470 1.8 J 16,400 42.4 <1 14.2 J 4,460 J <10 2,870 J 5.6 J 13.8 J	19,200 34.3 104,000 256 0.54 J 22 J 12,000 <10 25,600 40.3 J 112	<25 <300 1.8 J 36,800 15.5 <1 5 J 4,440 J <10 6,940 J 1.1 J 10.5 J	<300 2.2 J 32700 6.7 J <1 5.8 J 4,050 J <10 6,230 J <50 17.1 J

- Virginia Maximum Contaminant Level (based upon Federal MCLs).

 USEPA Region III Risk Based Concentration (concentrations for non-carcinogens multiplied by 0.1 to account for potential additive toxic effects).

 B This analyte was also detected in the associated method blank.

 J Constituent concentration was qualified as estimated.

 µg/L Micrograms per liter.

 NA Not Analyzed.

 Constituent concentration exceeds the Virginia MCL.

 Constituent concentration exceeds the Region III RBC.

G:\Prjcts\RADFORD\RAAP44\RFI Work Plan\Draft\Tables\Tables 3-19 through 3-20.GW Tables

Table 4-1. 2008 Proposed Sampling and Analysis Plan, Building Debris Disposal Trench, New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Media	General Sample Location	Number of Locations	Sample Depths (ft bgs)	Analyses	Sampling Objective
Subsurface Sediment/Soil	Lower Extent of Trench	2	2-3 / 3-4 / 4-5	PAHs	Delineate vertical extent of impacts to trench sediments
Surface Sediment/Soil	Perimeter of Trench Delta	6	0-1	PAHs	Delineate horizontal extent of impacts to delta sediment/soil
Sediment	Unnamed Creek	4	0-0.5	PAHs	Monitor horizontal extent of impacts to creek sediments
Surface Water	Unnamed Creek	4	NA	PAHs	Monitor horizontal extent of impacts to creek water

Table 4-2. 2008 Proposed Sampling and Analysis Plan, Bag Loading Area, New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Media	General Sample Location	Number of Locations	Sample Depths (ft bgs)	Analyses	Sampling Objective
Soil	Perimeter of buildings with conductive flooring	200-400	0 - 0.5	XRF Lead Screening	Delineate horizontal extent of lead impacts to soils around buildings
Soil	Perimeter of buildings with conductive flooring	20-40	0 - 0.5	Metals and Asbestos	Delineate horizontal extent of metals and asbestos impacts to soils around buildings
Soil	Perimeter of buildings with conductive flooring	5	0 - 0.5	TCLP Metals	Define disposal characteristics of soil
Soil	Central portion of the BLA	4	0 - 0.5	PAHs	Delineate PAH detections in central portion of the BLA
Soil	Transformers with previous PCB detects	7	0 - 0.5	PCBs	Delineate horizontal extent of PCB impacts to soils around transformers
Sediment and Surface Water	Underground Utility Vaults	Field Identified Locations	NA	Metals, PAHs, and VOCs	Characterize potential impacts to utility vaults from historical operations at the site

Table 4-3. 2008 Proposed Sampling and Analysis Plan, Igniter Assembly Area, New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Media	General Sample Location	Number of Locations	Sample Depths (ft bgs)	Analyses	Sampling Objective
Soil	Perimeter of buildings with conductive flooring	200-400	0 - 0.5	XRF Lead Screening	Delineate horizontal extent of metals impacts to soils around buildings
Soil	Perimeter of buildings with conductive flooring	20-40	0 - 0.5	Metals and Asbestos	Delineate horizontal extent of metals and asbestos impacts to soils around buildings
Soil	Perimeter of buildings with conductive flooring	5	0 - 0.5	TCLP Metals	Define disposal characteristics of soil
Sediment	Drainage Ditches	4-10	0 - 0.5	XRF lead screening	Delineate horizontal extent of metals impacts within drainage ditches
Sediment	Drainage Ditches	4	0 - 0.5	Metals	Delineate horizontal extent of lead impacts within drainage ditches
Soil	Building 8101 area with previous PCB/PAH detects	3	0 - 0.5	PCBs/PAHs	Delineate horizontal extent of PCB/PAH impacts to surface soils
Sediment and Surface Water	Underground Utility Vaults	Field Identified Locations	NA	Metals, PAHs, and VOCs	Characterize potential impacts to utility vaults from historical operations at the site

Table 4-4 2008 Proposed Sampling and Analysis Plan, Western Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Media	General Sample Location	Number of Locations	Sample Depths (ft bgs)	Analyses	Sampling Objective
	Northern portion of		0-1 / 1-2 / 2-3 / 3-4 (terminating at soil below	Metals (XRF	Delineate vertical extent of lead
Sediment	unnamed pond	4	sediment)	and Lab)	impacts to sediments/soils in pond
Surface Water	Unnamed pond	4	NA	Metals	Monitor lead impacts to surface water in the unnamed pond
Sediment	Unnamed creek downgradient of pond	2	0-1	PAHs	Monitor horizontal extent of PAH impacts to sediments in unnamed creek
Conform Water	Unnamed creek	٥	NA	DALI- // / / / / / / / /	Monitor horizontal extent of PAH impacts to surface water in unnamed
Surface Water	Unnamed creek downgradient of pond	2	NA	PAHs/VOCs	•

Table 4-5. 2008 Proposed Sampling and Analysis Plan, Groundwater New River Unit, Radford Army Ammunition Plant, Radford, Virginia

Sampling Point	Sampling Location	Analyses	Sampling Objective
BDDTMW01	East of trench delta, proximal to unnamed stream	TAL Metals, TCL VOCs, TCL SVOCs/PAHs, pesticides/PCBs, herbicides, explosives, dioxins/furans, perchlorate, TOC, and TOX	Determine possible impacts to groundwater
BLAMW01	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
BLAMW02	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
IAAMW01	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
IAAMW02	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
IAAMW03	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
IAAMW04	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
NBGMW01	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
NBGMW02	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
WBGMW01	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
WBGMW02	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
WBGMW03	Existing Monitor Well	TAL Metals	Confirm metal detections from previous sampling event
Natural Springs	Known spring at headwater of unnamed pond in WBG; any other natural springs found on NRU	TAL Metals, TCL VOCs, TCL SVOCs/PAHs, pesticides/PCBs, herbicides, explosives, dioxins/furans, perchlorate, TOC, and TOX	Determine background groundwater concentrations of all analytes

Figures

Source: Radford Army Ammunition Plant Master Work Plan, URS, 2003

PRJT MANAGER: T. LLEWELLYN	CHECKED BY:
DRAWING NRU-	SITELOC
PRJT NO: GP08	RAAP.00PM
DWG DATE: 14APR08	DRAFTER: J. TILLOTSON

SITE LOCATION

RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

FIGURE NO.

1-1

Q:\USACE\Radford\WorkPlan\mxd\Fig X NRU Site Map_v2.mxd - 5/6/2008 @ 2:48:47 PM

LEGEND

- 2004 Lead Detect Sample Location
- 2002 Lead Detect Sample Location

---- Road

Northern Burning Ground Boundary

NRU Installation Boundary

Note

 Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 0 100 200 400 Feet

> Source: NRU Additional Characterization Sampling & Groundwater Investigation Report, Shaw Environmental, Inc., 2007

NEW RIVER UNIT
RADFORD ARMY AMMUNITION PLANT
RADFORD, VIRGINIA

NORTHERN BURNING GROUND 2002 AND 2004 LEAD DETECTIONS

FIGURE

3-6

FIGURE 3-9

Q:\USACE\Radford\WorkPlan\mxd\Fig X NRU GW Locations_v3.mxd - 5/6/2008 @ 2:48:27 PM

FIGURE 4-5